Černok A. Marquardt K. Bykova E. Liermann H.-P. Dubrovinsky L. POSTER LOCATION #141
Response of α-Cristobalite to High Pressures Under Different Hydrostatic Conditions [#1777]
The response of α-cristobalite was studied at different levels of hydrostaticity, with the focus on formation, structure, and stability of cristobalite X-I.

Michalski J. R. Sharp T. G. Friedlander L. Glotch T. D. Bish D. et al. POSTER LOCATION #142
Effects of Shock Metamorphism on the Structure of Kaolinite [#2246]
Shocked kaolinite contains amorphous domains in shocked samples beginning at ~20 GPa. At 40 GPa, most of the material is amorphous, but unshocked domains exist.

Pickersgill A. E. Lindgren P. Burchell M. Lee M. R. Mark D. F. et al. POSTER LOCATION #143
Experimental Impacts into Feldspar Phenocrysts [#2164]
Impacting feldspars/Breccias, fractures, no melt yet/Cute little craters.

Wilk J. Kenkmann T. POSTER LOCATION #144
The Surface Structure of Shatter Cones in Experimental Impact Craters [#2637]
We analyzed with WLI and SEM shatter-cone-like features, displaying curved and striated surfaces, found in MEMIN cratering experiments.

Ebert M. Yener A. Mansfeld U. Kowitz A. Schmitt R. T. et al. POSTER LOCATION #145
Localized Shock-Induced Melting of Sandstone at Low Impact Pressures (<17.5 GPa): An Experimental Study [#1851]
This experimental study demonstrates that hydrous phyllosilicates of shocked sandstone underwent congruent melting during the shock process.

Hamann C. Hecht L. Deutsch A. POSTER LOCATION #146
Shock Behavior of Calcite and Basalt in a MEMIN Hypervelocity Impact Experiment and Laser Melting Experiments [#2497]
Here, we present first results of an ongoing experimental impact cratering campaign that investigates the behavior of calcite shocked by a basalt projectile.

Langenhorst F. Mansfeld U. Ebert M. Harries D. Reimold W. U. POSTER LOCATION #147
First Microscopic Evidence for Stishovite in a Shock Experiment with Sandstone and Constraints on Its Genesis [#1810]
We present first microscopic evidence for stishovite generated in a shock experiment by rapid crystallization from silica melt veins at high pressure.

McDermott K. H. Cole M. C. Burchell M. J. POSTER LOCATION #148
Hypervelocity Impacts into Multi-Layer Targets with an Ice Crust Over a Saturated Sand Base [#1219]
This a study of crater morphology produced by impacts into multi-layered target of water ice over saturated sand.

McDermott K. H. Cole M. C. Burchell M. J. POSTER LOCATION #149
Hypervelocity Impacts into Multi-Layer Target of Ice Over a Subsurface Ocean [#1221]
Crater morphology variation with ice crust thickness over subsurface ocean.
POSTER LOCATION #150

Integration of a Dust Accelerator into the IPG6-B Test Facility for Material Impact Tests [#2068]

Our task was to develop, design, and build a one-stage dust particle accelerator that can be connected to the IPG6-B facility at CASPER SSL.

Hogan J. D. Kimberley J. Hazeli K. Plescia J. Ramesh K. T.
POSTER LOCATION #151

On the Role of Defects in the Dynamic Failure of an Ordinary Chondrite [#1481]

The metallic phases serve as fracture sites, resulting in two fragmentation mechanisms: one associated with defect spacing, one associated with structural failure.