8:30 a.m. Russell C. T. * Raymond C. A. Nathues A. Gutierrez-Marquez P. De Sanctis M. C. et al.
Dawn Arrives at Ceres: Better than Hubble Resolution [1131]
Dawn is now obtaining better images of Ceres than HST obtains. We examine those images and discuss the mapping for the rest of the mission.

8:45 a.m. Nathues A. * Sykes M. V. Büttner I. Buczkowski D. L. Carsenty U. et al.
Dawn Framing Camera Clear Filter Imaging on Ceres Approach [2069]
Better-than-Hubble imagery by the Dawn Framing Camera will reveal a new planetary surface and address viscous relaxation, mantle convection, and water activity.

9:00 a.m. Zambon F. * De Sanctis M. C. Tosi F. Longobardo A. Palomba E. et al.
Identification of Homogeneous Units on Ceres. First Results by Dawn [1365]
In this work we analyze the first Ceres data provided by the VIR spectrometer onboard Dawn. We focalized on detection and spectral analysis of homogeneous units.

9:15 a.m. Ehmann B. L. * Brown M. E.
First Keck Adaptive Optics Global Infrared (2.2–4.1 μm) Spectral Map of Ceres: Results and a Review of Key Questions in Advance of Dawn’s Exploration [2807]
We show spectral/thermal heterogeneities in our Keck AO global infrared spectral dataset and review key questions prior to Dawn’s arrival at Ceres.

The Potential for Volcanism on Ceres Due to Crustal Thickening and Pressurization of a Subsurface Ocean [2831]
The thickening of an icy crust on Ceres can lead to increased pressure in a subsurface ocean and possible eruption of water onto its surface.

9:45 a.m. Travis B. J. * Bland P. A. Feldman W. C. Sykes M. V.
Unconsolidated Ceres Model has a Warm Conveching Rocky Core and a Conveching Mud Ocean [2360]
Numerical modeling suggests that hydrothermal convection in a rocky core and a mud ocean could have occurred in Ceres’ past, and may still be active today.

10:00 a.m. Zolotov M. Yu. * Mironenko M. V.
Metasomatism on Early Ceres: A Global Rock Alteration and Fluid Transfer [1466]
Ceres could have experienced leaching of elements from dehydrating rocks, redox transformation of organics, and separation of Na-C-Cl-S gas-rich aqueous fluids.

10:15 a.m. Neveu M. * Desch S. J. Castillo-Rogez J. C.
Modeling the Aqueous Geochemistry of Ceres and Other Dwarf Planets [2526]
We model the geochemistry of possible water-rock interactions in the interiors of dwarf planets, focusing on the feedbacks on geophysics.
10:30 a.m. Titus T. N. *
Ceres Surface Thermal Inertia: Predictions for Near-Surface Water Ice Stability and Implications for Plume Generating Processes [#1183]
We present results from thermal models of Ceres that constrain the possible sources and processes of the recently observed H₂O vapor plumes.

10:45 a.m. Schorghofer N. *
Predictions of Depth to Ice on Asteroid Ceres [#1091]
An asynchronously coupled numerical model is used to calculate desiccation rates on Ceres. In the polar regions, predicted depths to ice are very shallow.

11:00 a.m. Formisano M. * De Sanctis M. C. Capria M. T. Ammannito E. Capaccioni F. et al.
Water Sublimation and Surface Temperature Simulations of Ceres [#2405]
Ceres is one of the major objects of the main belt. Using a cometary-like model, we study the water sublimation and the surface temperature.

11:15 a.m. Hibbitts C. A. * Cheng A. Espiritu R. Young E.
Characterizing the Hydration Absorption Feature on Ceres Using the BOPPS Infrared Camera [#2928]
The NASA BOPPS mission measured the 3-µm absorption feature on Ceres. Preliminary analyses show no evidence for well-ordered hydroxylated minerals.

Impact Bombardment of Ceres [#2116]
Impacts on Ceres/Model crater formation/See below surface.