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Introduction: In Planetary Science, thermal inertia has 
been defined the ability of a material to resist a temperature 
change when applying a periodic forcing function. Thermal 
inertia is used to answer scientific questions about the Mar-
tian surface and is used to constrain engineering require-
ments. However, one not familiar with its derivation, may 
inquire the following: 1) Why are the factors of thermal iner-
tia under a radical? 2) What is the significance of an inverse 
roots second? 3) How does thermal inertia affect the heat 
flow i.e. what is the applicable equation? 4) Are there any 
analogous scenarios to improve conceptual understanding? 
     We reproduce the mathematical derivation of thermal 
inertia from first principles to recall this parameter’s origin 
and application. Finally we provide a set of analogous equa-
tions and propose a new term, periodic diffusive inertia that 
describes the ability of a potential variable (e.g. temperature) 
to change within a class of scenarios described by a diffusion 
equation undergoing a periodic boundary condition. 
Background: Thermal inertia is a thermophysical property 
of a material and is defined as the square root of the thermal 
conductivity, specific heat, and density—with the units of 
joules per square meter per kelvin per root second.  
   𝐼 ≡ 𝑘𝜌𝑐            [J ∙m!! ∙ K!! ∙ s!!/!  ]	
   Eq.  1 

     The thermal inertia of a surface is calculated from diurnal 
temperature changes from fly-by/orbiting spacecraft at Mars 
for ~50 years e.g. IR 6/7, IRIS, IRTM, TES, THEMIS, and 
OMEGA [1-6]. Detailed models calculate and map thermal 
inertia from observed orbital temperatures [4,7,8], and labor-
atory investigations have furthered its implications e.g. 
[9,10]. In-situ thermal inertia measurements have been col-
lected with Mini-TES [11], and REMS is collecting thermal 
inertia in situ at Gale Crater [12]. The THEMIS team has 
recently published quantitative thermal inertia maps [13]. 
The martian literature is rich with thermal inertia as a scien-
tific proxy to study particle size, outcrops of bedrock, indura-
tion, volatile/ice content, and more. Knowledge of the sur-
face material has many engineering implications such as 
landing site selection and rover traverse planning [14,15].  
Derivation:  We consult the works of Solid Heat Conduc-
tion from Ingersoll, Schneider, Carslaw and Jeager, and 
Wesselink  for the derivation [16-19]. The problem consists 
of a homogenous, semi-infinite solid excited by a steady, 
periodic forcing at the free surface. Via the methodology 
shown in figure 1, we reproduce a function for the instanta-
neous heat (Eq. 2). We see that 1) the square root for thermal 
inertia arises from the solution to the diffusion equation, a 
parabolic partial differential equation; 2) the inverse-root 
second, when multiplied by the root of the frequency, is “un-
rooted”; this is also the case for the e-folding skin depth; and 
3) the thermal inertia is a coefficient of the equation for Peri-
odic Thermal Flux, with some rearrangement, this is in 
agreement with flux equations in contemporary texts [19,20]. 
   𝛷! = 𝜃!! 𝑘𝜌𝑐 𝜔 cos ωt +

π
4   [J ∙m!! ∙ s!!] Eq.  2 

Analogies: Analogies are often applied to physical concepts 
to understand it from a different vantage point e.g. the mass-
spring-damper mechanical system and the inductor-
capacitor-resistor circuit. Circuits were used to simulate dif-
fusion problems of heat and groundwater flow [21,22]. To 
answer question 4, we show that thermal inertia has analo-
gies to the diffusion of molecular mass, the momentum of a 
fluid between oscillating plates, the hydraulic head in an 
aquifer undergoing periodic charging, and the alternating 
current in an electrical circuit. 
     For a steady state case, these scenarios are solely defined 
by a transport law that describes the change in some quantity 
of potential with respect to distance. These equations all 
contain a conductivity coefficient. 
     For the transient case, a corresponding equation exists for 
each of these scenarios that describes the storage of each 
principal quantity with respect to time. Each of these equa-
tions contains a capacity coefficient. 
Periodic Diffusive Inertia: Here we have found a general 
equation that contains the amplitude of the potential term, the 
square root of the conductivity and capacity coefficients, the 
square root of the frequency, and a cosine term that leads the 
boundary condition by π/4. This is the general periodic flux 
equation (Eq.  3). Furthermore it can be recognized that in 
each of these scenarios an analogous thermal inertia term 
is equal to the square root of the conductivity term multi-
plied by the capacity term. One could argue that the fre-
quency should be included here—to remedy the ambiguous 
inverse root second—however the frequency is not associat-
ed with the physical properties of the system, and it has his-
torically been excluded.  
     In addition, we propose that this general term be called 
the periodic diffusive inertia (ς ) (Eq.  4). Unlike linear iner-
tia i.e. mass or rotational inertia i.e. moment of inertia, peri-
odic diffusive inertia is used specifically for a system de-
scribed by the diffusion equation undergoing a periodic 
boundary condition. 
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Fig 1. Methodology for deriving the Periodic Flux Equation. The transport law and storage equation form a continuity equation in the form of 
the diffusion equation. It is solved for a solution f(x,t). The periodic boundary condition refines the equation as a boundary condition. The partial 
derivative is taken with respect to x. The result is substituted back into the transport law to obtain the final periodic flux equation. 

   𝛷!"#$%#&'(  !"#$!!! = ψ!"#$%#&'(  !"#$%&'()!!! ∙   ς!"#$%%&'$()  !"##$%"&'  !"#$%&' ∙ 𝜔 ∙ cos ωt +
π
4
   Eq.  3 

  
𝜍!"#$%%&'$()  !"##$%"&'  !"#$%&' = 𝐾!"#$%&'()('* ∙ 𝐶!"#"$%&'  

Eq.  4 

 
Table 1. Analogies 

Term Thermal  
Energy Molecular Mass Fluid Momentum Hydraulic  

Discharge 
AC Electrical  

Circuit 
Principal 
Quantity Q [J] Mass  

M [mol] 
Momentum 

P [N· s] 
Discharge 

Q [m3] 
Charge 
Q [C] 

Flow q [J· s-1] Mass Flow  
𝑀 [mol·s-1] Force F [N] Discharge Rate  

q [m3·s-1] 
Current 

I [C·s-1=A] 

Principal Flux Heat Flux 
Φ [J·m-2·s-1] 

Diffusion Flux  
J [mol·m-2·s-1] 

Shear Stress  
τ [Pa = N·m-2] 

Discharge Flux  
Φ [ m·s-1] 

Current Density 
j [A·m-2] 

Potential Temperature 
θ  [K] 

Concentration  
ϕ [mol·m3] 

Velocity  
v [m·s-1] 

Head 
h [m] 

Voltage 
V [V] 

Transport 
Law 

Φ = -k∇T 
Fourier’s Law 

J=-D∇ϕ 
Fick’s Law 

τ = -µ∇u 
Newton’s Law of 

Viscosity 

Φ  = -k ∇h 
Darcy’s Law 

j=-σ∇V 
Ohm’s Law 

Conductivity 
 Coefficient 

Thermal  
Conductivity 

k [J· m-1·K-1·s-1] 

Diffusion  
D [m2·s-1] 

Viscosity  
µ [Pa· s] 

Hydraulic  
Conductivity 

K=κ/µ  [m· s-1] 

Electrical Conductivity 
σ=l/A·R   
[Ω-1·m-1] 

Storage Equa-
tion 

𝑑𝑄 = 𝑐𝜌 ∙ 𝜈
𝜕𝜃
𝜕𝑡 𝑑𝑡 

Black’s Eq.* 

𝑑𝑀 = 𝑣
𝜕𝜙
𝜕𝑡 𝑑𝑡 

Mass Flux 
𝑑𝑃 = 𝜌 ∙ 𝑣

𝜕v
𝜕𝑡 𝑑𝑡 

Newton’s 2nd Law 
𝑑𝑄 = 𝑆_𝑚 ∙ 𝑣

𝜕h
𝜕𝑡 𝑑𝑡 

Groundwater Flow Eq. 
𝑑𝑞 = 𝐶

𝜕V
𝜕𝑡 𝑑𝑡 

Capacitance Eq. 

Capacity  
Coefficient 

Volumetric Heat 
Capacity 

ρ· c [J·K-1·m-3] 
1 Density  

ρ [kg·m-3] 
Specific Storage 

S_m [m-1] 
Capacitance 

𝐶 
[s·Ω-1] 

Diffusivity 
Coefficient 

𝛼 =
𝑘
𝜌𝑐

 

 
Thermal Diffusivity 

 
D 
 

Diffusivity 

𝜐 =
𝜇
𝜌

 

 
Kinematic Viscosity 

𝑎 =
𝐾
𝑆_𝑚

 

 
Hydraulic Diffusivity 

𝑎!"# =
1
𝑅!𝐶!

=
𝑙!

𝑅𝐶
= 𝜔!" ∗ 𝑙! 
Electric Diffusivity*/ 

Cut-off Frequency 

Diffusion 
Equation 

𝜕!𝜃!
𝜕𝑥!

=
1
𝛼
𝜕𝜃
𝜕𝑡

 
 

Heat Diffusion 

𝜕!𝜙!
𝜕𝑥!

=
1
𝐷
𝜕𝜙
𝜕𝑡

 
 

Fick’s 2nd Law 

𝜕!v!
𝜕𝑦!

=
1
𝜐
𝜕v
𝜕𝑡

 

Simplified Navier-
Stokes Eq.* 

𝜕!ℎ
𝜕𝑦!

=
1
𝑎
𝜕ℎ
𝜕𝑡

 

 
Hydraulic Diffusion* 

𝜕!V
𝜕𝑥!

= 𝑅!𝐶!
𝜕𝑉
𝜕𝑡

 
Simplified Telegraph 

Eq. * 

Periodic Flux  
Equation 

𝜙! = 𝜃!! 𝑘𝜌𝑐 𝜔  

∙ cos ωt +
π
4

 

𝐽 = 𝜙!! 𝐷 𝜔 

∙   cos ωt +
π
4

 

𝜏 = 𝑢!! 𝜇 ∙ 𝜌 𝜔 

∙   cos ωt +
π
4

 
𝛷 = ℎ!! 𝐾 ∙ 𝑆! 𝜔 
∙   cos ωt + !

!
 

𝐽 = 𝑉!! 𝜎 ∙
𝜖
𝑑!

𝜔 

∙   cos ωt +
π
4

 

Periodic 
 Diffusive 

Inertia 

𝒌 ∙ 𝝆𝒄 
[J·m-2·K-1·s-1/2] 

Thermal Inertia 

𝑫 
[m·s-1/2] 

Diffusive Inertia* 

𝝁 ∙ 𝝆 
[kg·m-2·s-1/2] 

Fluid Inertia* 

𝑲 ∙ 𝑺𝒎 
[s-1/2] 

Hydraulic Inertia* 

𝝈 ∙ 𝑪
𝒍𝟐

 
[s1/2·Ω -1·m-2] 

Electrical Inertia* 
*Placeholder names not found in literature. **This likely applies to other scenarios e.g. quantum, biological, and statistics 
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Equation	
  

Partial	
  
Derivative	
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Solution	
  f(x,t)	
  
Continuity/
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Transport	
  
Law	
  

Storage	
  
Equation	
  

Periodic	
  
Boundary	
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   Transport	
  

Law	
  

2914.pdf46th Lunar and Planetary Science Conference (2015)


