THE FORGOTTEN UNCERTAINTIES IN USING RADIOCHRONOMETRY TO DATE MINERALS THAT FORMED IN THE EARLY SOLAR SYSTEM—THE EXAMPLE OF ⁵³**MN.** M. A. Tyra¹, ¹National Institute of Standards and Technology, Gaithersburg, MD, (mark.tyra@nist.gov).

Introduction: Many cosmochemical studies that employ radiochronometric methodologies report analytical uncertainties but leave out, depending upon the measurement and system, perhaps the primary source of uncertainty-that of the used system's half-life. In fact, often the half-life of the system used in a publication is reported as invariant with not even a citation to the workers who derived the value or to the database where the consensus value is stored. That the half-lives of radiochronometric systems that are used to date minerals are often not considered in the discussion of the merit of a derived value results in analyses with uncertainties that are not fully considered. This may affect the conclusions of a study and have repercussions that affect how results from different radiochronometric systems fit together.

Not only is half-life uncertainty perhaps underappreciated in Early Solar System (ESS) geochronology, but many systems need verification. For example, the halflife of ⁶⁰Fe was recently radically revised [1]. Furthermore, many radionuclidic systems that are relied upon in geochronology have not been scrutinized for over 40 years; recently a meta-analysis of ⁸⁷Rb, ¹⁴⁷Sm, ¹⁷⁶Lu, ²³⁰Th, ²³²Th, ²³⁵U, and ²³⁸U found all but the value for ²³⁸U critically lacking [2,3]. As Pb-Pb dated angrites have been used to correlate many radionuclidic systems used in the Early Solar System (of which the ²³⁵U-²⁰⁷Pb system is crucial) [4], a poorly-constrained underpinning for ESS geochronology is a problem that must be addressed.

This presentation discusses systems currently used in ESS geochronology (e.g., ¹³⁵Cs, ¹⁰⁷Pd, ¹²⁹I, ⁴¹Ca, ⁵³Mn, and the isotopes of U) and focuses on the history of the ⁵³Mn-⁵³Cr system, including the reasons for the current consensus value and what pitfalls exist for using this and other systems.

Mn-53: From 1955 to 1974, there were nine evaluations of the half-life of 53 Mn (Fig. 1). To my knowledge, there have been no further measurements since. One of the last four analyses [5] was chosen to represent the half-life of 53 Mn and the common value of 3.7 ± 0.37 (10%) My has been adopted [2], most likely because this study had the lowest reported analytical uncertainty.

Can a combination of studies do better? There are many ways to combine the results of different studies. For instance, the latest four derived values shown in Fig. 1 look like they could be representations of the actual value of the half-life of ⁵³Mn. Without evaluating the

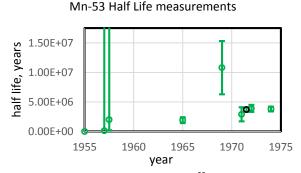


Fig. 1. Nine determinations of the ⁵³Mn half-life. The black symbol denotes the current consensus value [5].

merits of the work behind each value, one can construct a weighted mean using the inverse of the variance and calculate a value of $(3.74 \pm 0.24) \times 10^6$ years. If we use the last three references, one can calculate a half-life of $(3.77 \pm 0.24) \times 10^6$ years. Both of these values "improve" the uncertainty term from 10% to ~6.5%. Other methodologies, such as using criteria to evaluate the merit of a study and combining results with a random effects model [e.g., 2], can improve upon this result.

Summary: A systematic evaluation of the chronometers that we use in ESS studies is necessary. As analytical precision has increased, the half-lives of many radiochronometers now used represent the largest sources of uncertainty in analyses. Improving these numbers, either through meta-analysis [e.g., 2] or through redetermination is needed. Improving these values not only will improve our understanding of events that occurred in the ESS, but have broad implications for geochronology and even nuclear forensics.

References: [1] Rugel, G. et al. (2009) *PRL*, 103, 072502. [2] Boehnke, P. and Harrison, M. (2014) *Internat. Geol. Rev.*, 56, 905-914. [3] Boehnke, P. and Steele, R. C. J. (2014) 77th Metsoc. Mtng., Abstract #5409. [4] Krot, A. N. et al. (2006) In: Lauretta, D. S., Leshin, L. A., and McSween, H. Y. Eds.). *Meteorites and the early solar system II*, Univ. of AZ Press, Tucson, AZ, 525-553. [5] Honda, M. and Imamura, M. (1971) *Phys. Rev. C*, 4, 1182-1188.

Acknowledgements: This work benefited from discussion with Ian Hutcheon, Ryan Fitzgerald, and Jacqueline Mann.