COMPARISON OF LARGE AND MID-SIZE LUNAR CRATER DISTRIBUTIONS. R. Z. Povilaitis ${ }^{1}$, M. S. Robinson ${ }^{1}$, D. M. Nelson ${ }^{1}$, L. R. Ostrach ${ }^{1}$, C. H. van der Bogert ${ }^{2}$, and H. Hiesinger ${ }^{2}$, ${ }^{1}$ School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (rpovilaitis@ser.asu.edu), ${ }^{2}$ Institut für Planetologie, Westfälische Wilhelms-Universität, Münster, Germany.

Introduction: The rims of a total of 22,746 craters 5 to 20 km in diameter were digitized from a WAC Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) mosaic and WAC stereo derived shaded relief maps. A global areal crater density map was created from this crater database ([1] Fig. 1) and compared to a $\geq 20 \mathrm{~km}$ diameter crater density map produced from Lunar Orbiter Laser Altimeter data [2]. Subtracting the $5-20 \mathrm{~km}$ diameter density map from the $>20 \mathrm{~km}$ density map revealed several regions with significant crater density differences.

Crater Counts: All craters between $\sim 4 \mathrm{~km}$ and $\sim 21 \mathrm{~km}$ in diameter (to ensure completeness) were digitized at a scale between 1:250,000 and 1:500,000 in ArcGIS. Basemaps used included: 1) a $100 \mathrm{~m} /$ pixel scale WAC monochrome (643 nm) mosaic with an average solar incidence of 60°, and 2) a $100 \mathrm{~m} /$ pixel LROC WAC Digital Elevation Model (GLD100 [3]) based shaded relief to help demarcate craters in shadowed regions at the poles and/or subdued craters. Craters outside the $5-20 \mathrm{~km}$ diameter range were not used in the creation of the global crater density map.

Crater Density: We determined areal crater density for each diameter range ($5-20 \mathrm{~km}$ and $\geq 20 \mathrm{~km}$) independently using a moving neighborhood method with a radius of 500 km and an output cell size of 15 km . Density magnitude values for each map were divided into 10 equal-interval bins and reclassified with a ranking of 1 to 10 (1 being lowest density and 10 being highest). The resulting $5-20 \mathrm{~km}$ density map (Fig. 1) was subtracted from the $\geq 20 \mathrm{~km}$ density map to produce a crater density difference map (Fig. 2). Output cell values of the difference map range from -4 to +5 . Positive difference values represent a high density (red) of $\geq 20 \mathrm{~km}$ craters relative to $5-20 \mathrm{~km}$ craters, and negative values represent low density (blue) of $\geq 20 \mathrm{~km}$ craters relative to $5-20 \mathrm{~km}$ craters.

Discussion: The crater density ratio map allows the investigation of regional and global variations in the densities of mid- to large-scale craters, which provide information about both the ages and resurfacing history of the Moon. The crater density map (Fig. 1) represents a proxy for age, such that it can be used to separate younger (blue) mare units from older (red) highlands units, an aspect also noted by [2] for the density map of $\geq 20 \mathrm{~km}$ diameter craters. Crater size-frequency distributions can be directly extracted for desired count areas from the data set. The ratio of the two density maps allows for the investigation of discrepancies be-
tween the two crater-size populations, which draws attention to anomalous regions of interest for more focused studies.

For example, the difference map shows a high density difference west of the Mare Australe region $\left(50^{\circ} \mathrm{S}\right.$ to $70^{\circ} \mathrm{S}, 15^{\circ} \mathrm{E}$ to $45^{\circ} \mathrm{E}$) with a value of +5 (Fig. 3) due to an excess of larger craters relative to the $5-20 \mathrm{~km}$ population. In addition, weaker small crater retention due to topographic, regolith, and/or target property effects may also have affected the smaller crater sizes in this area (secondary effect). This +5 region encompasses an area of approximately $1.5 \times 10^{5} \mathrm{~km}^{2}$ and is surrounded by a roughly $6.4 \times 10^{5} \mathrm{~km}^{2}$ positive (+4) relative crater density region $\left(40^{\circ} \mathrm{S}\right.$ to $80^{\circ} \mathrm{S}, 16^{\circ} \mathrm{W}$ to $83^{\circ} \mathrm{E}$). This area is composed of a variety of ancient geologic units [5] and may be situated at sufficient distance from large resurfacing events (Imbrium, Orientale, and Schrödinger basins) to have retained a larger population of $>20 \mathrm{~km}$ diameter craters. If this hypothesis is correct, the difference maps elucidate the efficiency of basin forming events to erase craters with diameters greater than 20 km .

Two regions south of Mare Moscoviense exhibit a negative crater density difference of -4 (Fig. 4). The two regions $\left(13^{\circ} \mathrm{N}\right.$ to $28^{\circ} \mathrm{N}, 138^{\circ} \mathrm{E}$ to $\left.145^{\circ} \mathrm{E}\right)$ and $\left(11^{\circ} \mathrm{N}\right.$ to $24^{\circ} \mathrm{N}, 147^{\circ} \mathrm{E}$ to $157^{\circ} \mathrm{E}$) encompass areas of approximately $5.1 \times 10^{4} \mathrm{~km}^{2}$ and $7.3 \times 10^{4} \mathrm{~km}^{2}$, respectively. Two other negative crater density difference (4) regions east of Mare Moscoviense $\left(10^{\circ} \mathrm{N}\right.$ to $20^{\circ} \mathrm{N}$, $164^{\circ} \mathrm{E}$ to $179^{\circ} \mathrm{E}$) and ($2^{\circ} \mathrm{N}$ to $17^{\circ} \mathrm{N}, 170^{\circ} \mathrm{W}$ to $159^{\circ} \mathrm{W}$) encompass areas of approximately $7.8 \times 10^{4} \mathrm{~km}^{2}$ and $9.9 \times 10^{4} \mathrm{~km}^{2}$, respectively. Previously unrecognized secondaries [4] may have contributed to an overabundance of smaller craters in these four regions.

Outlook: We are currently studying the anomalous regions in detail, by incorporating geological maps, data from other studies, and new crater size-frequency distribution measurements with corresponding absolute model ages. These data will help support or refute the proposed effects responsible for the greatest differences shown in the difference maps.

References: [1] R. Z. Povilaitis et al. (2013), NLSI Lunar Science Forum [2] Head J.W. et al. (2010) Science 329, 1504-1507 [3] Scholten F. et al. (2012) JGR 117, E00H17 [4] McEwen A.S. and Bierhaus E.B. (2006) Ann. Rev. Earth Planet. Sci. 34, 535-567 [5] Wilhelms, D.E. et al (1979) USGS I-1162 Geologic Map of the South Side of the Moon.

Figure 1. Crater density map generated from the measurement of 22,746 craters 5 to 20 km in diameter.

Figure 2. Density difference map ($>20 \mathrm{~km}$ map minus the $5-20 \mathrm{~km}$ crater), allowing the comparion of the density of large lunar craters [1], with that of mid-size craters shown in Fig. 1.

Figure 3. Anomalous high $>20 \mathrm{~km}$ crater density area west of Mare Australe.

Figure 4. Anomalous high 5-20 km crater density area adjacent to Mare Moscoviense.

