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Introduction:  Classification of ordinary chon-

drites is typically done through measurements of the 

composition of olivine and pyroxenes, via electron 

microprobe, oil immersion or other methods [1-4]. 

These methods can be time consuming and costly 

through lost sample material during thin section prepa-

ration. Previously the author described the methods by 

which Raman microscopy can perform the same meas-

urements [5] but considerably faster and with much 

less sample preparation. Raman spectroscopy as a clas-

sification tool is now being tested and corroborated by 

other researchers [6] to speed the classification of large 

amounts of chondrites such as those retrieved from 

Antarctica.  

The concept of using Raman spectroscopy to clas-

sify meteorites is scientifically robust as seen in previ-

ous uses of this technique for olivine composition 

analyses [8-13] It has also been shown that the analysis 

is insensitive to isotopic variation [14]. However, one 

difficulty must be overcome before Raman analysis 

can be used as a standard method for classifying mete-

orites – the need for robust, high fidelity spectral cali-

bration in order to discern the relatively small peak 

shifts that must be measured. While this is not a severe 

technological limitation, it must be addressed. 

 

 
Figure 1: Classification of chondrites by type and petrographic 
grade, using composition vs. standard deviation of composition 
values. These graphs are from the Meteoritical Society Database 
website [7] with a detailed description provided on that site. Ordi-

nary chondrites can be classified using a statistically relevant number 
of olivine and/or pyroxene 

 

 

The Challenge: Classification of ordinary chon-

drites is made by measurement of the chemical compo-

sition of olivine and pyroxene (Figure 1)[7,8]. Compo-

sition of olivine is a straightforward measurement by 

Raman spectroscopy, as described in detail by 

Kuebler et al (2006) (Figure 2)[9]. The composition of 

pyroxenes has likewise been demonstrated in a semi-

quantitative fashion [10,11]. For the purpose of this 

study, we will focus on olivine. The Raman spectrum 

of olivine is dominated by two vibrational modes that 

appear at ~820 and ~850 cm
-1

. These peaks shift in 

accordance with Fo [8-12]. The full range of Raman 

peak shift over the 0-100 Fo range is ~10 cm
-1

 for the 

~820 cm
-1

 Raman peak, and ~19 cm
-1

 for the ~850 cm-

1 peak. The span of Fo numbers exhibited by ordinary 

chondrites covers ~60 to 90 Fo, for a span of about 30 

Fo units. Therefore, the range of Raman peak positions 

of interest run span a range of ~3 cm
-1

 for the ~820 cm
-

1
 peak and 5.7 cm

-1
 for the ~850 cm

-1
 peak. This means 

that single-cm
-1

 spectral resolution is necessary, which 

is a reasonable constraint for most Raman instruments. 

More importantly, it means that the spectral calibration 

must be stable and repeatable with a sub-cm
-1

accuracy. 

This is a challenge. The normal vibrational and thermal 

environment can be sufficient to cause variation in 

spectral calibration on the order of one or two cm
-1

 in 

the course of the normal operation of a typical Raman 

instrument. 

 

 

 
Figure 2: Raman spectrum (inset) of olivine showing two strong 
Raman peaks around ~820 and ~850 cm

-1
 (“DB1” and “DB2”, re-

spectively). The positions of these peaks are an indicator of olivine 
Fo number. The graph shows the Fo number calculated from indi-
vidual spectra collected from EETA79001 as a function of positions 
of the Raman peaks. Figure adapted from [9]. 
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This small shift can affect calculated Fo values and 

lead to erroneous classifications. 

 

The Solution: One way to solve this problem is 

with spectral calibration cycles before and after every 

spectrum, but this is a time-consuming operation. To 

solve this problem we devised a second option; real-

time spectral calibration. We have modified a Raman 

instrument to collect Raman spectra and neon emission 

lamp spectra concurrently. Every spectrum, regardless 

of the actual physical alignment of the instrument, 

comes with a reference spectrum of sufficient fidelity 

to calibrate the spectrum to sub-cm
-1

 accuracy. The 

reference spectrum comes from the NIST Atomic 

Spectra Database [15]. This is a standard spectroscopic 

technique, but consistent measurements of individual 

wavenumber cm
-1

-accuracy may also allow us to accu-

rately identify the classes of un-equilibrated chondrites 

as well. 

 
 

 

 
Figure 3: Raman spectrum from the Fukang pallasite showing the 

typical olivine doublet and Ne spectra that will be be used for  real-
time calibration of every spectra. After spectra has been calibrated, 
the Ne peaks will be subtracted from the spectra for calculation of Fo 
values. 
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