Hidden in the Neutrons: Physical Evidence for Lunar True Polar Wander
M.A. Siegler1, R.S. Miller2, J.T. Keane3, I. Matsuyama3, D.A. Paige4, M. J. Poston5, D. J. Lawrence6 (1Planetary Science Institute, 2University of Alabama in Huntsville, 3University of Arizona, 4UCLA, 5Caltech/JPL, 6JHU-APL msiegler@psi.edu)

Introduction: Epithermal neutrons provide a robust measure of hydrogen abundance and have been used on many planetary bodies to measure hydrogen enhancements [e.g. 1,2,3,4]. Lunar polar epithermal neutrons display a strong, statistically significant, off-polar enhancement that is not clearly explainable by the current thermal environment. One plausible explanation is that these enhancements represent locations of past water ice stability [5].

Here we suggest the polar hydrogen distributions are consistent with an hypothesis incorporating a record of lunar true polar wander (TPW). Specifically, regions near the maxima of the hydrogen distributions may be evidence of a “paleo-pole”. Of particular note is that the location and wander direction from the paleo-pole are consistent with theoretical expectations of TPW caused by a large mass anomaly associated with the Procellerum KREEP Terrain (PKT), an outcome expected from the postulated thermal anomaly in the PKT mantle [e.g. 6].

Background: Suppression of the epithermal neutron leakage flux provides a measurements of hydrogen to depths of approximately a meter and remains the key evidence of subsurface ice and hydrated minerology on many solar system bodies. The distribution of hydrogen at the lunar poles (see Figure 1) has been a longstanding enigma [1,7,8,9], and a satisfactory explanation for the observed spatial distribution has remained elusive.

Recent deposition of volatiles from comets/asteroids or solar wind-related processes is expected to be controlled by temperature. Yet the inter-polar hydrogen spatial distributions are more closely correlated to each other than they are to expectations based on thermal models of the respective poles [10]. This inter-polar hydrogen correlation is especially strong when the statistical significance of observed neutron features [9,11] is taken into account.

Correlation: Spatial relationships between multiple datasets have been quantified using a 2D correlation analysis (see Figure 2). The only statistically significant inter-polar correlation is between the water equivalent hydrogen (WEH) abundance distributions. These were derived from epithermal measurements [9,11] and show a strong correlation (max significance at an offset of ~168±13° equivalent to 9.3σ) supporting a near-antipodal relationship. Inter-polar correlations between temperature related parameters, including predicted ice locations [10], are not significant.

We note that hydrogen sources within specific PSRs can be used to match spatially deconvolved neutron data [7, 21], but there is not a clear reason why certain craters should have higher concentration than others having similar thermal environments. Figure 2 summarizes the 2D-correlation of the polar WEH maps. The departure from an exact 180° offset is within error and expected due to the effects of topography, which will undoubtedly have some control over hydrogen stability.

Theory: One simple explanation for antipodal off-polar hydrogen enhancements is that these locations represent the position of the past lunar rotation.

Figure 1: A view of Lunar Prospector epithermal neutron counts for the North and South Lunar poles, respectively. Red “x”s mark the peak Hydrogen detection in the North and yellow in the South, projected onto each other.

Figure 2: Significance of 2D correlation between the North and South epithermal neutron data noting the strong correlation between the data only when placed near an antipodal configuration (180°), with a slight offset (at 168°) due to topographic effects.
axis, prior to an episode of true polar wander (TPW). TPW, reorientation of the body with respect to the rotation axis, has been proposed to explain features on Mars [e.g. 12,13], Enceladus [14], Europa [15]; Mercury [16], the Earth [17], and the Moon [18].

In a TPW scenario, water ice, collected at these ancient poles and was largely lost during the transition to the current spin axis orientation, but left behind a record, possibly in hydrated mineralogy or adsorbed water still visible to neutron spectrometers today. These hydration deposits need not be confined to present-day PSR regions and may reflect past topography. Despite the effects of topography, near polar PSRs on a low density body will increase with proximity to the pole. If the lunar spin axis differed in the past, one would expect an enhancement in cold traps (and ice) at this theorized paleo-pole.

The proposed 5.5 degree reorientation in latitude is relatively modest compared to that suggested by magnetic [19, 25] or gravity [18] data. However, any TPW event requires a perturbation to the inertia tensor. In order to determine possible geological causes for this TPW, we developed a forward model for removing simple, artificial mass anomalies (Figure 3) from the present-day (non-hydrostatic) lunar inertia tensor.

![Figure 3: Simple model of warm, low density mantle anomaly placed below the PKT region.](image)

Through a parameter-space survey, we find that the required reorientation is consistent with the formation of a low-density anomaly beneath the PKT (Figure 4). While the parameter space produces many other possible solutions, representing both positive and negative density anomalies, no other physically plausible solutions correlate with observed geological features (e.g. other impact basins, including South Pole-Aitken). Our proposed negative anomaly is consistent with the existence of a region of warm mantle below the PKT. Such an anomaly has been predicted to result from the concentration of crustal radiogenics in this region [6].

Here we propose that the statistically significant off-polar antipodal features in lunar epithermal neutron data may present a clear and testable hypothesis of a record of true polar wander. The observed neutron signature is either a low resolution signature of recent, fairly concentrated water ice deposits within the current lunar cold traps, or a diffuse, impact-mixed, ancient, hydrated regolith (consistent with ancient TPW).

This can be tested. Recently delivered hydrogen should be located within permanently shadowed regions and would need to be relatively concentrated in specific regions [7,21,10]. Ancient hydration associated with TPW would be seen both inside and outside of shadowed regions, but would need to be associated with an observable mass anomaly, which may be detectable with GRAIL gravity data [18], and a future lunar geophysical missions [e.g. 22,23]. Currently available neutron spectrometer spatial resolution does not allow to differentiate between these two hypotheses [7]. However, new neutron measurements that could spatially resolve hydrogen concentrations within individual PSRs could discriminate between these two hypotheses [24].