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Introduction:  Asteroids and comets are thought to 

be critical as the key to understand the origin and evo-

lution of the solar system and have attracted many re-

searchers to focus on this topic. In this paper, the sta-

bility and topological structure of equilibrium points in 

the potential field of asteroid 101955 Bennu have been 

investigated with varied density and rotation period, 

which show fruitful results of the dynamical system of 

a noncentral rotating potential field. The polyhedral 

method performed by Werner and Scheeres(1996) is 

used to investigate the gravitational field of asteroid 

Bennu. In order to have a global view of the dynamic 

system of the minor bodies, both the internal and ex-

ternal potential fields are investigated. 

Most of the minor bodies such as asteroids and 

comets are irregular-shaped along with a rapid rotation 

period, which makes the orbital dynamic in the vicinity 

of them highly nonlinear and quite different from that 

of planets. Though there are some small bodies mis-

sions have been performed, the dynamic environment 

near an asteroid or a comet is still filled with unknown 

and very complex. In Hayabusa mission, the spacecraft 

carried a detachable minilander, MINERVA, but it 

failed to reach the surface of Itokawa due to the com-

plex dynamical environment. So further investigation 

must be performed for both science issuses and future 

missions to small bodies. 

The polyhedral model of The three-dimensional 

shape model of asteroid Bennu adopted in this paper 

was driven from the radar images and optical 

lightcurves by Nolan et al.(2013). The asteroid is quite 

irregular-shaped and has no any symmetry with a wrin-

kle-pop shape. Figure 1 shows the polyhedral model 

with 1348 vertices and 2692 faces, which provides the 

geometric dimensions of Bennu to be 576×539 × 526 

m with a mean diameter of 492 ± 20 m. The volume is 

also calculated as 0.0623 ± 0.006 km
3
. Considering 

the gravitational dynamics and Yarkovsky effect, the 

bulk density is estimated as 1260 ± 70 kg/m
3
, thus 

associated with a mass of (7.8 ± 0.9) × 1010 kg. This 

has indicated a macroporosity in the range of 40 ± 

10%, suggesting a rubble-pile internal structure of 

Bennu. Using radar images and optical lightcurves, the 

rotation period of Bennu is derived as 4.29746 ± 

0.002 h, which is a rather fast spin speed and supposed 

still being spun up. 

 

 

 
Figure 1.  Polyhedral Model of Asteroid Bennu. 

Considering the spacecraft as a massless particle 

orbiting the rotating Bennu, the equations of motion, 

which are time-varying in the inertial reference frame, 

can be easily written as autonomous differential equa-

tions in the body-fixed frame as follows: 

  2 ( )U     r r r r   ,  (1) 

where r is the body-fixed vector from the original point 

to the field point, ω is the angular velocity of the aster-

oid Bennu. When applying the principal-axis rotation, 

ω is a constant with the magnitude |ω|=ω. U(r) is the 

gravitational potential, which is time-invariant and only 

related to the position of the field point. The value of 

U(r) is performed by using the polyhedral method. 

In order to get a more general result of orbital dy-

namics near an asteroid, nondimensionalization was 

introduced. The equivalent radius r0 of Bennu is the 

characteristic unit to scale the length, which is defined 

as follow: 
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   3

0L 3 / 4 245.88 mr Volume    ,  (2) 

and the characteristic unit of time is 

  T 1/ 2462.26 s  .  (3) 

So the nondimensionalized form of dynamical equa-

tions can be obtained as 

 2 ( ) ( )U     r r r r   ,  (4) 

where the gravitational attraction term ( )U r  also chang-

es the form correspondingly as 

 ( ) ( )e e e f f f

e edges f faces

U L 
 

      E Fr r r ,  (5) 

with a dimensionless quantity η as follow: 

 
2

G



 .  (6) 

The equilibrium points and their stabilities are stud-

ied. Except the polyhedral shape model, the dynamical 

equations in the vicinity of irregular-shaped small bod-

ies are relevant to the physical properties of the small 

bodies, such as density and rotation period, which are 

all involved in the dimensionless quantity η for the 

dimensionless form. These physical properties are not 

very accurate and different results show differences. 

Hirabayashi and Scheeres (2014) have used these dif-

ferences to study the structural constrains of 216 Kleo-

patra with the size as a variable parameter. On the oth-

er hand, because of the Yarkovsky effect, the rotation 

period of some small bodies has become shorter with 

the example of asteroid 54509 YORP (2000 PH5). On 

the year of 2005, it rotated another 250 degrees more 

than that was expected in 2001, whose spin velocity is 

still rising every day. So in this paper, the number and 

stability of equilibrium points are investigated with 

variable physical properties. Fruitful results of the or-

bital dynamics in the vicinity of an asteroid are per-

formed, which indicates bifurcation for not only the 

number of the equilibrium points but also topological 

structure of the manifold near the equilibrium points. 

Figure 2 shows the bifurcation of the number of 

equilibrium points of asteroid 101955 Bennu. The 

number and position of equilibrium points of asteroid 

101955 Bennu have both changed if the rotation period 

has varied. With the dimensionless quantity η of the 

asteroid increasing, the two equilibrium points on the 

bottom right of Figure 2(a) mix up and disappeared as 

showed in Figure 2(d). The same situation will occurs 

for the two equilibrium points on the upper left of Fig-

ure 2(a) if η continues to increase as showed in Figure 

2(f). Also the topological structure of the equilibrium 

points will change which indicates bifurcation. An 

equilibrium point can change from an unstable saddle 

point to a stable center point, which indicates that there 

will be new period orbits near the equilibrium point. 

There are many other conditions when applying this 

method to other irregular-shaped bodies and fruitful 

bifurcation occurs. 

 
(a) η= 0.30                                (b) η= 0.55 

 
(c) η= 0.57                                (d) η= 0.65 

 
(e) η= 0.70                                        (f) η= 1.00 

Figure 2.  The Equilibrium Points and Zero Velocity Curves 

of Bennu with the Variation of η. 

The results of this research can help to make a bet-

ter understanding of the dynamic environment near a 

small body with the consideration of the inaccuracy of 

the physical properties. It provides physical examples 

with the background in astrodynamics to show the phe-

nomena of bifurcation in the potential field, which is 

very interesting in math and physics.  
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