LOW AND HIGH ALBEDO JOVIAN TROJANS AND HILDAS: A SIMILAR OR DIFFERENT ORIGIN?

M. Marsset1,2, P. Vernazza3, F. Gourgeot1, C. Dumas1, M. Birlan4, P. Lamy3, R. P. Binzel1, 1European Southern Observatory, Chile, e-mail: mmarsset@eso.org 2Aix Marseille University, France. 3Observatório nacional, Brasil. 4Observatoire de Paris, France. 5Massachusetts Institute of Technology, USA.

Introduction: Jupiter Trojans and Hilda asteroids are small primitive bodies located near or beyond the snow line, around respectively the L4 and L5 Lagrange points of Jupiter at \textasciitilde 5.2 AU from the sun (Trojans) and in the 2:3 mean-motion resonance with Jupiter near 3.9 AU (Hildas). Our current understanding of the early dynamical evolution of the Solar System tells us that they probably originated from the primordial transneptunian region from which they were captured in their current location (Nice model; [1, 2]). In addition, this region not only comprised planetesimals formed beyond the snow line (D-, T-, and X-type asteroids) but also a minor population of rocky interlopers (e.g., A-, S-, V-type asteroids) that migrated outward during the very early evolutionary phases of the Solar System 5 to 7 My after its formation (Grand Tack model; [3]). The recent discovery by WISE [4, 5] and Spitzer [6] of high albedo (p\textsubscript{s} \textasciitilde 0.15) asteroids within jovian Trojans and Hildas opened the possibility of an observational evidence for the presence of a small fraction (\textasciitilde 2 \%) of such interlopers among these two low albedo (p\textsubscript{s} \textasciitilde 0.07) populations.

Observations: We report the very first spectroscopic characterization of a sample of high albedo Trojans and Hildas obtained with X-SHOOTER and SpeX in the visible and/or near-infrared ranges. This study allows us to investigate the origin of these high albedo objects and to provide an estimate of the contamination rate of jovian Trojans and Hilda asteroids by objects that do not belong to the C/T/D-type complex (e.g., A-, S-, V-type asteroids), thus constraining migration models [1, 2, 3, 7, 8]. The results of this study will be presented in details.