TESTING SOLAR PROTON IRRADIATION MODELS FOR 10Be: CORRELATION WITH 138La.
D. S. Burnett1,3, M.-C. Liu2, J. M. Paque1, K. D. McKeegan2, J. R. Beckett1. 1California Institute of Technology, Pasadena, CA 91125, 2Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA 90095, 3burnett@gps.caltech.edu.

Introduction: Short-lived radionuclides potentially provide unique views of the local stellar neighborhood, specifically the environments and processes and their timing. 10Be is special in being solely the product of high energy spallation reactions (i.e., it cannot be produced by stellar nucleosynthesis) but the sourcing is, nevertheless, a matter of model-dependent debate hinging primarily on whether spallation occurred via cosmic rays or irradiation from the early sun (e.g., [1-6]). Here, we consider solar proton irradiation of CAI “precursors,” either as primary condensates or an earlier generation of CAIs [3-6]. Extant CAIs are not themselves the irradiated objects because proton fluences required to synthesize 10Be would have left many isotopic signatures that are not observed, such as large amounts of co-produced spallation 7Li and noble gases. To account for this, solar irradiation models must assume the loss of volatile elements (including Li and B, but not Be) during or after irradiation. These fractionations complicate testing solar proton irradiation models, in part, because the nature and history of the original target material becomes ambiguous and this can have substantial effects on computed isotopic compositions. For example, initial (10B/11B) of CAIs can be determined from 10Be isochrons and several studies report enhanced (10B/11B) ratios, which are generally interpreted as arising from a mixture of solar and spallation B. If the precursors were chondritic, irradiation models show that producing required amounts of spallation B would produce too much 10Be. Using a CAI bulk composition leads to a more plausible concentration of 10Be [3].

One way to avoid dealing with complications associated with the high volatility of many light elements produced in spallation reactions is to instead measure the isotopic variations of refractory elements subjected to the same irradiation that produced 10Be. The best candidate is probably 138La, which is produced by the low energy reaction 139Ba(p,n) and, to a lesser extent, by 140Ce spallation. For 138Ba(p,n), we adopt the measured cross sections from 140Ce(p,n) ([7], reasonable since 140Ce is an N=82 closed shell nucleus like 138Ba), and a proton energy spectrum of the form E^{-a} p/(cm2-MeV). We set the p fluence (>50 MeV) to produce 10Be/11Be = 5 x 10^{-4} for a CAI with a 20 x CI chondrite enrichment in refractory elements (Be, Ba, La). Table 1 shows that large excesses in 138La over the natural abundances would be expected for the proton fluences necessary to produce 10Be. We also note that predicted 138La excesses are very sensitive to the proton E spectrum because 138La production occurs primarily between 7 and 20 MeV proton energy.

Table 1. Irradiation Model Results

<table>
<thead>
<tr>
<th>Exponent, a</th>
<th>p fluence/cm2</th>
<th>δ^{138}La</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.3 x 10^{18}</td>
<td>21 %0</td>
</tr>
<tr>
<td>3</td>
<td>1.9 x 10^{18}</td>
<td>270 %0</td>
</tr>
</tbody>
</table>

Shen and Lee [8] measured excesses of 138La in four CAIs that ranged from 0 to 6‰. Although excesses were statistically different from zero for three of the four CAIs, all of the excesses were considerably less than values shown in Table 1. Shen and Lee interpreted the measured 138La excesses to indicate UN anomalies since they correlate with 50Ti enrichments in the same CAIs. If, however, the 138La excesses are produced by Solar System irradiation, a correlation of excess 138La and 10Be is expected. Comparison of the 138La excesses of [7] with literature 10Be for the same CAIs gives equivocal results for a correlation because the errors in both 10Be and 138La are large. The CAI Egg 6 is, however, unique in that it shows no excess 138La, so there is a clear prediction that Egg 6 should have no measurable 10Be. We report here Li-Be-B isotopic measurements of Allende Egg 6.

Sample and Analyses: Egg 6 is a type B1 CAI, originally studied because of the presence of large Fremlinde [9]. A section was kindly provided to us by G.J. Wasserburg. Mellilite Åk values vary from Åk$_{41}$ at the rim to Åk$_{50}$ in the core. Mellilite Na$_2$O contents increase rapidly beyond Åk$_{50}$ indicating secondary core melting, typical of Type B1 CAIs. Following the approach of [10], we made isotopic and elemental abundance analyses using the UCLA IMS 1270, primarily on melilite, of Li, Be, and B isotopes, normalizing to 28Si$^{++}$ as a matrix reference ion. The number of cycles varied depending on the B signals; 5/21 profiles were rejected as showing only B surface contamination.

Results: Considerable structure was observed in some B profiles because of B-rich inclusions, probably alteration veins. For 7 such profiles (e.g., Fig. 1), 10B/11B was calculated for regions selected to avoid or to isolate contributions from the inclusions. For the other 9 profiles, the ratio was calculated based on the deepest region of the profile, after sputtering away surface contamination. Fig. 2 shows that, over most of the range of 10Be/11B, a respectable isochron is
observed which agrees with a reference isochron corresponding to an initial $^{10}\text{Be}/^{9}\text{Be} = 8.5 \times 10^{-4}$, comparable to previous literature data. Fig. 3 shows that two highly radiogenic points were encountered, but these lie significantly below the isochron defined by the remainder of the data, most simply explained by a redistribution of radiogenic ^{10}B. The analyses with the lowest $^{9}\text{Be}/^{11}\text{B}$ are consistent with excess radiogenic ^{10}Be compared to the reference $^{10}\text{Be}/^{9}\text{Be} = 8.5 \times 10^{-4}$ isochron (Fig. 4), although there is sufficient scatter such that a precise initial $^{10}\text{Be}/^{11}\text{B}$ is not obtained.

Discussion and Conclusions: Egg 6 has clear evidence for ^{10}Be, but no measurable excess ^{138}La. This would be consistent with ^{10}Be not being a product of solar proton irradiation. However, products from such an irradiation depend on details of the assumed irradiation conditions and targets. In particular, ^{10}Be is produced primarily by high energy protons (~50MeV), whereas ^{138}La production from ^{138}Ba would reflect the flux of protons in the 7-20 MeV range. To use solar protons efficiently and to have a sufficiently high temperature for condensation of CAI precursors, production near the Sun is indicated. Nevertheless, a relatively small amount of matter between the Sun and the CAI precursor dust could absorb the lower energy protons that produce ^{138}La but have little effect on the >20 MeV protons that produce ^{10}Be. For example a shell of H$_2$ gas of 0.4 g/cm2 between the Sun and the CAI precursor cloud would block passage of protons less than 30 MeV [11]. The rate of p energy loss decreases rapidly with increasing energy in this energy range and ^{138}La production from protons greater than 30 MeV slowing down into the 7-20 MeV range would be inefficient, although we have yet to do detailed modeling of this effect. The thickness of such an absorbing gas cloud depends on the pressure and temperature, but for 1000K, and pressures ranging from 10^{-3} to 10^{-6} atm, gas cloud thicknesses in the range of 10^{-1} to 10^{-4} solar radii are indicated, which seem plausible. An alternative model is synthesis in a thick, well-stirred “thick target” of CAI dust for which ^{138}La would be synthesized only in roughly the outer 0.4 g/cm2. It is possible that additional measurements would reveal large ^{138}La excesses in other CAIs and that these could be used to refine any connections to ^{10}Be.

References: