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Summary: Combined analyses of gravity and to-

pography can yield useful information about the interi-
or structures of planetary bodies [1–4]. Based on radio 
tracking of the Cassini spacecraft, we present an esti-
mate of the gravity field of Saturn's large moon Rhea. 
Combining this with a shape model based on limb pro-
file analyses, we attempt to constrain Rhea's internal 
structure, concluding that the core likely exhibits some 
excess flattening. 

Gravity: During its time in the Saturn system, Cas-
sini has performed two close fly-bys of Rhea devoted 
to gravity investigations: one in November 2005, and 
another in March 2013. As in previous work [2,4,5], 
the gravity field of Rhea was estimated by reconstruct-
ing the spacecraft trajectory during these encounters, 
making use of precise measurements of the Doppler 
shift of a highly stable microwave radio link between 
Cassini and the ground station antennas of NASA's 
Deep Space Network.  

The available data were analyzed in a multi-arc fit 
estimating a fully unconstrained quadrupole gravity 
field for Rhea, the Rhea state vector at a reference 
epoch, and the spacecraft initial state vector for each 
fly-by. The stability of the solutions was tested by per-
turbing the dynamical model in various ways, includ-
ing estimating a full 4x4 gravity field and changing the 
a priori uncertainties. 

The resulting estimate of Rhea's gravity field ex-
hibits a statistically significant departure from the hy-
drostatic expectation (Figure 1), with a J2/C22 ratio of 
3.9±0.1 (the hydrostatic ratio is ~3.33). As a result, the 
moment of inertia cannot be inferred directly from the 
Radau-Darwin approximation. Estimating the moment 
of inertia directly from the J2 or C22 coefficients yields 
incompatible and unrealistic estimates of ~0.41 and 
~0.37, respectively.  

Shape: Rhea's shape has been determined previ-
ously via analyses of limb profiles [6,7]. After incorpo-
rating the latest available data, we repeat this analysis, 
obtaining a best-fitting tri-axial ellipsoid with semi-
axes:  

a = 765.7 ± 0.3 km, 
b = 763.6 ± 0.3 km, 
c = 762.9 ± 0.2 km, 

from which we obtain the unnormalized degree-2 
coefficients: J2 = 1190 ± 260 m, C22 = 350 ± 120 m 

(uncertainties are all one-sigma). Figure 2 illustrates 
how the shape compares with the hydrostatic expecta-
tion for various assumed moments of inertia. The cen-
tral value is close to the expectation for a nearly ho-
mogeneous, hydrostatic body, however the uncertain-
ties are large.  

Internal Structure: There are a number of ways to 
explain the excess oblateness (higher than expected 
J2/C22 ratio) in Rhea's gravity field that are consistent 
with the observed shape. 

Homogeneous Model: If Rhea is of uniform densi-
ty, it can be shown [8,3,4] that the shape required to 
explain the observed gravity is given by   

𝐻!" = !!!! !
!

𝐺!" (1) 
where R is Rhea's mean radius, and 𝐺!" and 𝐻!" 

are spherical harmonic coefficients of degree l and 
order m, representing the dimensionless gravitational 
potential and topography, respectively. In addition to 
the J2 and C22 values estimated from limb profile ob-
servations, Figure 2 shows the values obtained from 
equation (1) based on the gravity coefficients illustrat-
ed in Figure 1. The gravity field is thus consistent with 
a homogeneous Rhea of the observed shape, to within 
the shape model's uncertainties. 

 
 
Figure 1: J2 and C22 dimensionless gravitational potential 
coefficients for Rhea, with crosshairs illustrating the one-
sigma uncertainties. Expected hydrostatic values of J2 and 
C22 are indicated for various normalized moments of inertia 
along the theoretical hydrostatic line (dashed line). 
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Two-Layer Model: Considering that the surface is 
most likely water ice [9,10], it may be more realistic to 
assume some internal layering. Here, we consider a 
simple two-layer model: silicate core and H2O mantle. 
We assume the density of the mantle is 920 kg/m3 and 
we examine a series of different core densities. For 
each assumed core density, we compute the core radius 
required to satisfy the observed bulk density constraint 
(𝜌 = 1236 kg/m3). 

If the surface conforms closely to the central values 
of our shape model, then the excess oblateness of the 
gravity field requires an irregular core shape (i.e., ob-
lateness at the core-mantle-boundary that is beyond the 
hydrostatic expectation)—similar concepts have been 
considered previously for Enceladus [6,11] and Mimas 
[12]. With this two-layer model, we can solve for the 
core-mantle-boundary topography required to give rise 
to the observed gravity field (e.g., [11,13]). Given a 
known gravity field and surface topography, expressed 
in spherical harmonics, it can be shown that the re-
quired topography at the core-mantle-boundary is giv-
en by 

𝐻!"!"# =
!
∆!

!
!!!

!!! !!!! !!
!

𝐺!" − 𝜌!𝐻!"!       (2) 

where 𝐻!"!"# is the core-mantle-boundary topogra-
phy at degree l and order m, ∆𝜌 is the density contrast 
at the core-mantle-boundary, d is the depth of the core-
mantle-boundary (𝑑 = 𝑅 − 𝑅!"#$), 𝜌 is Rhea's bulk 
density, R is Rhea's full radius, 𝜌! is the density of the 
mantle, 𝐺!" is the dimensionless gravitational potential 
resolved at radius R, and 𝐻!"!  is the surface topogra-
phy.   

As illustrated in Figure 3, if the surface conforms 
to our shape model (Figure 2), and assuming we have 

not significantly overestimated the C22 topography, 
then some excess core oblateness (roughly 1 km) is 
required to account for the observed gravity field. This 
excess core topography implies stresses of ~0.3 MPa, 
which are readily supported by cold silicate materials. 
With larger mantle thicknesses, the core-mantle-
boundary is deeper and so larger amplitudes are re-
quired to overcome the resulting attenuation of the 
gravity signal. 

Conclusions: The observed shape is consistent 
with the shape required for an undifferentiated (uni-
form density) Rhea to account for the observed gravity. 
However, because the surface is more likely to be wa-
ter ice, a two-layer model may be a better approxima-
tion (cf. [5]). In this case, and assuming a mantle densi-
ty of 920 kg/m3, some ~1 km of excess core oblateness 
may be necessary to account for the observed gravity 
(Figure 3). A wide range of moments of inertia is al-
lowed, but models with low moments of inertia (i.e., 
more differentiation) require greater magnitudes of 
excess core topography to satisfy the observations. 
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Figure 3: Required J2 and C22 core-mantle-boundary to-
pography for each of four different mantle thicknesses (5, 
100, 200, & 400 km) relative to the expected hydrostatic 
line (dashed black line), assuming the surface conforms to 
our shape model. For each assumed mantle thickness, the 
corresponding moment of inertia factor is given in the 
legend. 

 
 
Figure 2: Limb-profile-based estimates of the J2 and C22 
topography coefficients for Rhea, with crosshairs illustrating 
the one-sigma uncertainties. Also shown is the surface to-
pography required for a homogeneous Rhea to produce the 
observed gravity field, computed from equation (1). 
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