Maxwell's Constant-scale Surfaces

On Reciprocal Figures, Frames and Diagrams of Forces

A method for calculating stresses in a structure [text cut off]

Largely, I shall extend the method to the investigation of the state of stress in continuous bodies, and shall point out the nature of the function of stress for stresses in two dimensions, extending the use of such functions to stress in three dimensions.

If we used the function of stress because we require, we may have a new method of calculating. The form of the function F is limited only by the conditions to be fulfilled at the bounding surface of the body.

In cases of continuous stress, the symmetrical method of calculation is still the best, although we have long been in search of a more general method to be found in the graphical method.

Maps as Maxwell Surfaces

Ganymede Map (Dione and Miranda Similar)
1. Draw a tree through centroids of old terrain
2. Make CSNB map from that tree
3. Derive the complementary tree
4. Make CSNB map from that tree

Cassini region

Ganymede

Maps as Maxwell Surfaces

Isolines Might Derive Unseen Districts

Beam Action as Precedent

Ganymede

Bottom: four deep-cup Eisenlohr projections aligned with different tidal-force criticalities. A, B, C, and D.

Isolines as wavefronts, and may resolve forces. Given any district and arrangement, isolines derive a centredoidal network, a tree.

At the point farthest from Ganymedian old terrain in Gailmap, along the tree most remote from Dorian "whips" is Cressus.

Mapping and Graphic Stress Analysis for Icy Satellites Using Constant-Scale Natural Boundary Methods

Tidal Forces as Equivalent Concentrated Loads

Encehedus

Luna

Encehedus map courtesy C. Cox (Wright) and P. Popooland.