1. Introduction

Conflicting Objectives for Landing Sites

- **Technical requirement**: Minimize continuous night length
 - **Continuous nights**
 - Daytime and Night alternate
 - **Night**
 - Can't generate electricity all the time
 - Run out of power
 - **Can generate electricity during daytime**
 - Long daytime & short continuous night site is good

- **Mission requirement**: Minimize the distance between landing site and ice
 - Less ice exists at illuminated sites

Requirements for landing sites
- Minimize continuous night length
- Maximize communicable time between moon and the Earth
- Minimize slope angles
- Minimize the distance between the landing site and ice etc...

Use Multi-Objective Optimization to select sites that satisfy all the requirements.

What is Multi-Objective Optimization?

- **Advantages of Multi-Objective Optimization**
 - No need weighting factors
 - Each objective value is evaluated separately
 - Find several optimal solutions at once
 - We can choose any favorable optimal solution

- **How to select multi-objective optimal solutions**
 - Pareto ranking
 - Each solution’s rank is defined as \(r(X) = 1 + n_i \)
 - \(i \) : the order of the solution
 - \(n_i \) : The number of solutions that are superior to \(X \)
 - No need to compare between objective values that have different units
 - Rank 1 solutions form a Pareto frontier
 - Multi-objective optimal solutions exist on the Pareto frontier

2. Method

Create Moon Database
- Calculate moon data by moon simulator
 - The amount of sunshine
 - Communicability
 - Slope angles

Check Constraints
- **Constraint 1**: Slope angles < 15.0 degrees
- **Constraint 2**: Continuous night length < 14 days

Calculate Objective Functions
- **Minimum objective value is the best**
 - Continuous night length
 - (Max night length) / (Constraint night length)
 - Communicable day length
 - 1.0 – (Illuminative & Communicable day) / 365
 - Slope angles
 - (Slope angles) / (Constraint slope angles)
 - Ice distribution
 - (3D distance from ice) x (depth of ice)

Divided landing sites by objective functions

- **Sunshine**: 17413 sites
- **Communication**: 11424 sites
- **Slope**: 11402 sites
- **Ice distribution**: 11803 sites
- **Landing sites**: 0

Multi-Objective optimal solutions

- **A**: At the South Pole
 - (Within 20 km)
- **B**: Around the South Pole
 - (Within 20 km)
- **C**: Top of the mountains & Facing the Earth

Conclusion

- Search landing sites that satisfy conflicting objectives by multi-objective optimization
- Classify multi-objective optimal landing sites by objectives
 - Analyze missions suitable for each site
 - At the South Pole: Extremely narrow, but desirable sites for lunar exploration
 - Around the South Pole (Within 20 km): Suitable for missions using high autonomy rovers
 - Top of mountains & Facing the Earth: Suitable for explorers that communicate with the Earth and are controlled by human frequently