POSTER SESSION: NEOS, METEORS, AND HAZARD MITIGATION: WHEN THE SOLAR SYSTEM WANTS TO CRASH AT YOUR PLACE
6:00 p.m. Town Center Exhibit Area

Sansom E. K., Bland P. A., Paxman J.
POSTER LOCATION #346
Automated Dynamic Modelling of Fireballs for the Australian Desert Fireball Network [#1591]
A constrained dynamic optimization and an extended Kalman filter are used for analysis of fireballs from the Desert Fireball Network.

POSTER LOCATION #347
Fireball and Meteor Event 20130824190218UTC ‘Pilis’ [#2838]
The medium-sized fireball events are mostly nondocumented analytically, because of the small amount of fallen mass. We try to document the 2013.08.24.Pilis event.

Narziev M.
POSTER LOCATION #348
The Forms of Ionization Curves Producing Bright Meteors [#1681]
Identified five groups of ionization curves that vary in the form of electron line density distribution along a meteor trail.

Paxman J. P., Bland P. A.
POSTER LOCATION #349
Fireballs in the Sky: Improving the Accuracy of Crowd Sourced Fireball Observation Through the Application of Smartphone Technology [#1731]
A fireball reporting system has been developed, using smartphone technology to improve accuracy, and increase the likelihood of successful meteorite recovery.

Plesko C. S.
POSTER LOCATION #350
The Response of Meteoritic and Cometary Materials to Neutron Bombardment [#2846]
This work models the response of meteoritic and refractory cometary materials to neutron bombardment.

Weavew R. P., Gisler G. R., Plesko C. S.
POSTER LOCATION #351
An Overview of the Los Alamos PHO Mitigation Project [#1107]
Los Alamos National Laboratory has a new project to perform computer simulations of the use of nuclear explosives to mitigate the threat from a PHO.

Lai H. R., Russell C. T., Wei H. Y., Delzanno G. L., Connors M.
POSTER LOCATION #352
Identifying Potentially Hazardous 50-m Class Co-Orbiting Materials Associated with Known ‘Safe’ Near-Earth Objects [#1560]
Occurrence records of interplanetary field enhancements are used to trace interplanetary collisions and thus the spatial distributions of small objects.

Howley K. M., Owen J. M., Wasem J. V.
POSTER LOCATION #353
Asteroid Threat Mitigation: An In-Depth Look at What Can Be Done in Three Real-Object Scenarios [#2276]
We model the response of asteroids 2008 EV5, Apophis, and 1998 KY26 to nuclear explosions and kinetic impactors and compare.

POSTER LOCATION #354
NEOWISE: Preliminary Results from the Restarted Mission [#2724]
The NEOWISE project has recently resumed its survey for asteroids and comets at 3.4 and 4.6 μm.

POSTER LOCATION #355
NEOWISE: The Distribution of the Large Primitive Asteroids [#2605]
The results of taxonomical classification of the large primitive asteroids from the outer main belt to the giant planets based on NEOWISE data.
Elvis M. Allen L. Christensen E. DeMeo F. Evans I. et al.
POSTER LOCATION #356

LINNAEUS: Boosting Near-Earth Asteroid Characterization Rates [#1047]

LINNAEUS will take optical spectra of ~1500 NEOs/year within days of discovery using 50% of the KPNO 2.1 m, a clone of the SED-machine and dedicated pipelines.

Ness R. G. Emery J. P.
POSTER LOCATION #357

Thermal Inertia Estimates of Four Near-Earth Asteroids from Spitzer Space Telescope Spectral Observations [#1430]

The goal of this work is to estimate thermal inertia values, albedos, and diameters for four near-Earth asteroids.

Schwartz S. R. Michel P.
POSTER LOCATION #358

NEOShield Study of Hypervelocity Impacts into Small Bodies: Simulating the Fate of Ejecta [#2415]

We present simulation results of an ongoing NEOShield-sponsored study investigating the NEO threat mitigation technique of using nonexplosive targeted strikes.