1:30 p.m. Keane J. T. * Matsuyama I.
Hill Slope Failure as a Mechanism to Resurface Asteroids During Planetary Flybys [#2733]

The signatures of space weathering are being mysteriously wiped off of asteroids during planetary flybys. We propose a new mechanism for how this happens.

1:45 p.m. Noviello J. L. * Ernst C. M. Barnouin O. S. Daly M.
Block Distribution on Itokawa: Implications for Asteroid Surface Evolution [#1587]

Our observations indicate that small blocks are potentially affected by differing accretionary or geological processes relative to the large ones.

2:00 p.m. Basilevsky A. T. * Head J. W. Horz F. Ramsley K.
Survival Time of Meter-Sized Rock Boulders on the Surface of Asteroid Itokawa [#1688]

The meter-sized boulders on Itokawa should have a survival time 2.5–3 times longer comparing to similar boulders on the lunar surface.

2:15 p.m. Sears D. W. G. Tornabene L. L. Osinsky G. R. Hughes S. S. Heldmann J. L.
The Ponds on Eros: Possible New Insights from Experiment, Vesta, Mars, and Terrestrial Analogues [#1606]

Recent discoveries of water on Vesta, and new ideas concerning energetic events and volatile surfaces, we suggest that fluidization have formed the Eros ponds.

2:30 p.m. Gillis-Davis J. J. * Scott E. R. D.
Explaining the Sulfur Depletion on Eros and the Different Space Weathering of S-Type and V-Type Asteroids [#1189]

We report on what caused S depletion on Eros, and why S-type asteroids appear more weathered than the surface of Vesta.

2:45 p.m. Vilas F. * Hendrix A. R.
Searching for Evidence of UV/Blue Space Weathering in S-Complex Asteroid Photometry from the Sloan Digital Sky Survey [#2772]

Differences in UV/blue space weathering of S-complex asteroids is sought in the Sloan Digital Sky Survey Moving Object Catalog photometry.

3:00 p.m. Koga S. * Sugita S. Kamata S. Ishiguro M. Hiroi T. et al.
Spectral Evolution Tracks of S-Type Asteroids Suggested by Principal Component Analysis of Multi-Band Images of Itokawa [#1721]

We performed PCA for spectra of Itokawa using high-resolution multiband images and found a possible spectral evolution track of S-type asteroids.

A Precise Cosmic-Ray Exposure Age for an Olivine Grain from the Surface of Near-Earth Asteroid (25143) Itokawa [#1247]

We have determined the masses of seven Hayabusa grains, and the He,Ne content of three grains, all of which have a cosmic-ray exposure age of 1.5 Ma (within error).
3:30 p.m. Fujiya W. * Hoppe P. Ott U. Meier M. M. Bochsler P.
Solar Wind Boron Observed in a Hayabusa Sample and a Gas-Rich Meteorite [#1802]
Boron-10 excesses were found in asteroidal regolith, possibly due to implanted solar wind. However, the isotopic ratios cannot be explained by current models.

3:45 p.m. Thompson M. S. * Christoffersen R. Zega T. J. Keller L. P.
Nanoscale Analysis of Space-Weathering Features in Soils from Itokawa [#2121]
An analysis of grains from asteroid Itokawa for microchemical and structural evidence of space weathering using transmission electron microscopy.

4:00 p.m. Keller L. P. * Berger E. L.
A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples [#1935]
Itokawa dust / Electron microscope pics / Show space-altered rims.

4:15 p.m. Britt D. T. * Schelling P. K. Consolmagno G. J. Bradley T.
Space Weathering on Volatile Rich Asteroids [#2067]
Space weathering processes and products on volatile-rich asteroids can include the in situ production of organics through Fischer-Tropsch catalytic reactions.

4:30 p.m. Nakauchi Y. * Abe M. Tsuchiyama A. Kitazato K. Yasuda K.
Laboratory Simulation of Solar Wind Implantation on Hydrated Silicate Minerals [#2004]
The reflectance spectra of hydrated silicate minerals irradiated solar wind protons showed a conspicuous change at the bands related to bonding state of –OH.