ARE ORGANIC MACROMOLECULES IN METEORITES FORMED WITHIN THE SOLAR SYSTEM?
S. Chakraborty1,, Teresa L. Jackson1, H. B. Muskatel2, Musahid Ahmed3, Bruce Rude1, R. D. Levine2,4 and M. H. Thiemens1, 1University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, La Jolla, CA 92093-0356 (subrata@ucsd.edu), 2The Fritz Haber Research Center, Hebrew University, Jerusalem 91904, Israel, 3Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, 4Department of Chemistry and Biochemistry, Crump Institute for Molecular Imaging, and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095.

Introduction: Nitrogen is a vital element for life on Earth because it is a basic ingredient of amino acids that constitute all nucleic acids and proteins. Nitrogen isotopic analyses (15N/14N) of solar system objects (e.g., meteorites, terrestrial planets, atmospheres of giant planets and their moons, solar wind, comets and interplanetary dust particles (IDPs) \cite{1} and references therein) advance understanding of prebiotic processes and defining the volatile inventory of the solar nebula. Bulk meteorite analysis exhibit a variation in the range of few hundred permil in δ^{15}N (wrt to air-N$_2$) \cite{2-4} with occasional exceptionally high values (as well as range of variation) in some carbonaceous chondrites, stony-iron and, iron meteorites (Figure 1A). The N-isotopic composition measured in a returned Solar wind sample from the Genesis discovery mission and in the atmosphere of Jupiter (in N$_2$H$_4$) are nearly equally depleted (\sim - 400‰, \cite{5, 6}. Conversely, extremely high 15N enrichments are observed as shown in Figure 1B in meteoritic ‘hotspots’ (of \sim5000‰ in some cases), interplanetary dust particles (IDPs), cometary samples (including that from Stardust mission) and, in insoluble organic matter (IOM) from meteorites \cite{7-9}.

High 15N enrichments are not always correlated with carbon isotopes (e.g., 13C/12C) \cite{2-4, 10, 11}, though there are occasional correlations with high D/H ratios \cite{12}. The relationship of nitrogen with carbon and hydrogen is important because of their presence in nitrile (-CN) and amine (-NH$_2$) functional groups in organic molecules. The D/H enrichment in the interstellar medium has been modeled at low temperatures (25K), including ion-neutral reaction fractions \cite{13}. Models of ion-molecule exchange reactions at extremely cold temperatures for N-isotopes include formation of 15N enriched functional groups in interstellar clouds and it is possible to form amine group molecules with 15N enrichments of \sim3000‰ in this process \cite{14, 15}. The uncertainties of these models largely resides in the unknown rate coefficients of key exchange reactions as there are a few experimental measurements and the theory of ion-molecule fractionations are not well worked out \cite{14}. Ion-neutral exchange reaction models predict simultaneous D and 15N enrichments, however, the lack of correlation between these two isotopic systems in the solar system weakens the premise that D and 15N enrichments are purely of presolar origin \cite{12}. A recent model predicts uncorrelated D and 15N enrichments and includes ortho and para forms of nitrogen in an ion-molecular reaction network \cite{16}. Processing of nitrogen through isotopologue selective photodissociation (i.e., isotope self-shielding) in the vacuum ultra violet (VUV) wavelengths has been proposed \cite{17}. In this abstract, we present wavelength, temperature and, pressure dependent N-isotopic fractionations during VUV photolysis of N$_2$ and discuss the relevance to the solar system.

Experimental: VUV photolysis of N$_2$ was carried out in a newly built, differentially pumped reaction chamber similar to the one described in \cite{18}. The trapping of the product N-atoms is non-trivial. A steady flow of high purity premixed gas (N$_2$: H$_2$ = 50 : 50) was established in the reaction chamber at two different N$_2$-partial pressures of 62 and, 100 mtorr, respectively, in three sets of experiments (range of column density: 3 - 5 x 1017 molecule/cm2). Photolysis of this gas mixture was carried out at ten different synchrotron bands (80 to 98 nm) at two different temperatures (23 and -78°C) in three sets of experiments. Photolytically produced atomic N was trapped as NH$_3$ and collected in sample tubes. Due to the lower gas phase rate constant of NH$_3$ formation reaction, the NH$_3$ yield was low (\sim 0.1 to 1.3 micromoles. N$_2$ was produced by pyrolysis (with CuO) of NH$_3$ and N-isotopic composition was measured using a Finnigan MAT 253 IRMS.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure1.png}
\caption{N-isotopic compositions of different solar system objects-(A) bulk analysis, (B) phase-specific micro-analysis.}
\end{figure}
Results: The measured N-isotopic enrichment profiles across the wavelengths for three different sets of experiments are shown in Figure 2. Unprecedented 15N enrichment is observed at a wavelength of 90 nm (111111 cm$^{-1}$). This particular wavelength zone is quite unique because of extensive state mixing in highly localized spectral regions (inset diagram of Figure 2) leading to large scale perturbations.

![Figure 2. Measured and calculated wavelength dependent N-isotopic enrichment profiles. Inset diagram shows the computed absorption cross-section of 14N$_2$ and 14N15N near the peak (90 nm) reflecting extensive state mixing.](2452.pdf)

VUV photochemistry of N$_2$: N$_2$ absorbs photons through slightly broadened partly overlapping rovibrational lines in the VUV region and dissociates via a repulsive triplet state. The absorption is subject to shielding primarily by absorption of the more abundant 1N$_2$ isotopologue resulting in an enrichment of 15N in the dissociation product due to preferential absorption of rarer 14N15N and 15N15N isotopologues [17]. Isotopic fractionation based on self-shielding was calculated for the present experiments using cross-sections from [19], which show higher enrichments compared to the experiments (Figure 2). The computed profile also shows a significant dependence on density suggesting self-shielding is a significant consideration but more importantly an additional and massive isotope effect must be considered to explain the unprecedented enrichment peak at 90 nm.

Connection to the Solar Nebula: Aromatic molecules (polycyclic aromatic hydrocarbons, PAHs) are the most common class of organic compounds in the universe in gas-phase as well as in carbonaceous dust [20, 21]. The IOMs are consisting of an aromatic condensed core, connected by aliphatic and ether linkages with various functional groups attached. When nitrogen replaces a carbon in the ring structure, it forms polycyclic aromatic nitrogen heterocycles (PANHs), the nucleobases, the essential building block for the origin of life and a prebiotically significant component. PANHs are possibly formed in the cold molecular cloud; however, these species are not resistant to UV and have a short life time of ~12 hours in extreme environments [20]. Nitrogenation of PAHs is possible while frozen in ice along with nitrile and amine functional groups while exposed to UV [22]. The PANHs could probably form inside the solar system by nitrogenation of PAHs and have not likely been transported from elsewhere. Production of a highly enriched 15N atom from N$_2$ photodissociation as demonstrated in the present experiment at the outer edges of the disk with subsequent production of 15N enriched amine and nitrile group molecules is plausible. Once formed, these functional groups may freeze-out in the ice and possibly synthesize PANHs within the ice with high 15N enrichment under UV exposure [20, 22, 23].

The range in observed nitrogen isotopic compositions extends to ~5000‰; thus a process(es) of this magnitude is needed to account for observations. The present experiments show that at selected wavelengths, nitrogen photolytic effects are more than double this range (12,000‰, Figure 2).

Acknowledgement: The work is funded through NASA’s Origins and Cosmochemistry program. MA and the ALS are supported by the Director, Office of Energy Res., DOE (Contract No. DE-AC02-05CH11231).

References: