
Introduction: The goal of the Mars2020 mission is to acquire up to 28 rock/regolith samples and 3 blanks (with ability to replace 6 cores) or 34 rock/regolith samples and 3 blanks, and cache these for the future return mission. Since the 1990s, Honeybee Robotics has been continuously engaged in developing technologies applicable to the Mars caching mission. In particular, we have built nine surface coring drills, ranging in mass from 1 to 5 kg. A number of unique technologies, and sampling bits have also been developed. These include the SLOT caching bit, the Powder and Regolith Acquisition Bit (PRABit), Rock Abrasion and Brushing Bit (RAABit), and PreView Bit. Honeybee has also developed three unique caching architectures; however only two are promising for the M2020 mission.

Caching Architectures:

One Bit One Core (OBOC): In the One Bit One Core architecture, a core is acquired using a low mass drill bit with integral break-off system. Following visual verification of sample enabled by the SLOT bit, the entire bit with core sample is placed directly into the cache (Figure 1). To collect and store 31 or 37 samples, the mission must be equipped with at least 31 or 37 cores (plus spares). The advantage is lower operational complexity (risk).

One Breakoff System One Core (OBSOC): In the One Breakoff System One Core (OBSOC) architecture, a core is acquired using a low mass drill bit with integral break-off system just like in the OBOC architecture. However, following visual verification of sample the bit’s cutting teeth, flute sleeve and shank (i.e. an auger bit) are discarded and the core sample, positively captured within the break-off tube, is stored in a cache (Figure 2). Hence only the breakoff tube and sleeve are retuned with the core. To collect and store 31 or 37 samples, the mission must be equipped with at least 31 or 37 bit assemblies (removable break-off systems are pre-installed in bits). The main advantage is that only the minimum elements necessary to maintain positive control of core sample are retuned. This yields lowest returned mass and volume.

Trade Studies for 31 and 37 Cores: Figure 3 and Figure 4 compare OBOC and OBSOC architectures. The total returnable mass increases for both architectures by ~400 gram when the number of cacheable samples increases from 31 to 37. However, the increase in spherical OS diameter is relatively small.
Unique Technologies and Bits:

Core Breakoff and Capture System: This patented, eccentric tube design offers a low profile method for shearing and positively capturing cores (no reliance on friction or gravity) as shown in Figure 5. It has been implemented in eight core drills and successfully verified in dozens of rock types.

Figure 5. Eccentric tubes core breakoff and re-tention technology (patented).

SLOT Caching Bits with Visual Verification System: The SLOT bit (closeable slot along length of coring bit) enables visual inspection of the entire core before caching (Figure 6).

Figure 6. The SLOT Bit allows viewing of cores in situ and serves as a caching bit.

Powder and Regolith Acquisition Bit (PRABit): The powder and regolith acquisition bit allows capture of rock powder or regolith sample for earth return (Figure 7). For rock powder acquisition, the bit could be integrated with two sieves (e.g. 1 mm and 150 micron).

Figure 7. Powder and Regolith Acquisition Bit (PRABit).

PreView Bit: The PreView bit (Figure 8) has been designed specifically to help with in situ rock analysis by instruments such as Raman, IR, and LIBS. The PreView bit is very similar to the SLOT bit except the window is much larger allowing access to a wider viewable area of the core. The PreView bit has also been tested and verified in various rock types and has been demonstrated to TRL 5.

Figure 8. The PreView bit allows capture and in-situ analysis of rock cores.

Grinding and Brushing of Rocks: In general, there are two approaches for addressing SDT requirements for grinding of rock surfaces. In the first approach, a dedicated grinding tool such as the Rock Abrasion Tool can be used. In the second approach, a grinding tool that is actuated by the Mars2020 drill could also be a viable option (Figure 9). The RAT is at TRL 9 and RABBit is at TRL 5/6.

Figure 9. Rock Abrasion Tools options for the Mars2020 missions.

Acknowledgements: M2020 related technologies were funded by NASA through various programs.