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Introduction: Space mission Dawn targeted 4 Vesta
provides a number of remarkable results concerning as
surface coverage as physical parameters of the surviv-
ing protoplanet. It was confirmed that Vesta differen-
tiated and Rheasilvia, a giant impact basin at the the
south polar region, is the most likely source of howar-
dite-eucrite-diogenite (HED) meteorites [1]. But, de-
gree of Vesta’s primary hondritic body melting is not
clear till now and depends on the time of its formation
at the beginning of the life of the Solar System [2]. So,
the core/mantle size and the composition of theirs
rocks remains questionable.

Analytical procedure: If the gravitational potential of
Vesta is modeled by a spherical harmonic expansion
in the body-fixed reference, then the main part in
second order is [3]

U(r,0,¢) =~ GM/r {1 + 1/r* [(A+B-2C)/2M Y%(3 cos(0)*
-1) + (B-A)/4M cos(29) 3sin*(0)]}

where A <B < C are principal moments of inertia, M
is mass and G is the gravitational constant. The un-
normalized coefficents (the reference radius of the
body is 265 km) are defined as [4]

C — (A+B)/2 = L"MR?, I,® = 0.071060892;
B— A =Cx»"4MR? C"=0.002818457.

Most recent and relevant data from Dawn are [4]
major axes of the best-fit ellipsoid,
a/b/c - 284.5/277.25/226.43 (km);
mass, M - 2.59076 x 10* (kg);
bulk density, p, — 3456 (kg/m3);
rotation rate, ® - 1617.333119 (deg/day).
For our purpose, the shape of Vesta is reasonably well
approximated by a twoaxial oblate ellipsoid, a; = b, =
280.85 (km), ¢; = 226.43 (km) and B = A at second
harmonic degree.
In this case using equatorial axes a as the reference
radius is more convenient
C — A = J,Ma® where J, = I,® (R/a)* and J,= 0.063266.
An exact analytical treatment provides for homogene-
ous twoaxial oblate ellipsoid (with an arbitrary bulk
density)
1,© =1/5¢?2, where eccentricity gl=1-ca’.
So, for homogenous Vesta, J, ©=0.069998 (g1=
0.5916) and J, < J, @5 aclear indication of the more
dense core relative mantle.

In order to explore the implications of the gravity
and shape for the interior structure of Vesta, simple
two-layer mass-balance model was explored with an
assumed core as twoaxial oblate ellipsoid with major
axes a, =b, > ¢, and eccentricity 822 =1- czz/azz. In
this case,

M= M1 + Mz’
where M, = 41/3 p; a’ c1, p1is the mantle’s density,
M, = 4m/3 (p,-p1) ay” c5, psis the core’s density. So,
mass-balance provides
1= pi/ po+ (p2- p1)/py (a2/a1)” ca/cy
or
(ax/ar)’ cafcr = (po-p1)/ (p2-p1) (1)

For two-layer model an exact analytical treatment
provides
LYW= 15[ M/Me’+M/M &, (ar/a) | )
After comparison with (1) we have

822(a2/a1)2: [5J2(1)' p1/py 812]/(1'P1/Pb) =DI1(p)>0(3)
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Fig.1

We assume that the core’s eccentricity €, <¢; as for
more dense rocks relative mantle and a,/a; < 1/2. In
this case left part of (3) should be less then 0.087. For

1, =1, =0.063266, the right part of the later ex-
pression - D1(p;) set the following limits for the un-
known mantle’s density as shown on Fig.1

3.0 < p; < 3.13 (g/em’)

At hydrostatic equilibrium, an exact analytical treat-
ment provides for homogeneous twoaxial oblate ellip-
soid with bulk density p, eccentricity &* = 1 — c¢*/a*
and rotation rate o the following relation

/27 pyG = 1/1[arctg(1)(3 + 1) — 31] = E(1),
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Fig. 2
where 1(g) = ¢/ V1 - & (see Fig.2).

So, for Vesta with the rotation rate ® = 1617.333119
(deg/day) or rotation period T = 5.342 h and bulk den-
city pp = 3456 (kg/m3)

©*/27 pyG = 0.074
and F(1) provides £ =0.518 while Vesta’s eccentrici-
ty €,=0.5916. So, ¢ < ¢, is clear indication of the
nonequilibrium figure. The Vesta’s Bouguer anomaly
mapped to the 290x265-km ellipsoid through harmon-
ic degree 15 [4] shown non-compensated relief as
well.

Results and discussion: The above discussed simple
core/mantle model provides reasonable value for mean
mantle’s density. Diogenites are currently believed to
originate from deep within the crust of the Vesta and
relatively unbrecciated olivine-rich diogenites consist
of an equilibrium assemblage of olivine (3.27-3.37
g/cm’) and magnesian orthopyroxene — harzburgite
(2.99-3.2 g/em®) [5]. So, we can use this model at ana-
lytical treatment for more detailed analyses of the
gravity of Vesta and implications for internal stresses

[6].

It is clear now that the evolution of Vesta was a com-
plex process and in the initial stage its rocks were
more mobile than currently. Additional investigation
of the relation between rotation rate and figure of Ves-
ta given its heterogeneity and petrological constraints
is required and will be followed.

References:

[1] S. Marchi et al. (2012) Science, 336, 690-694.
[2] A. Coradini et al. (2011) Space Sci. Rev., 163, 25-
40. [3] Kaula W.M. (1966) Theory of Sattellite Geo-
desy. Blaisdell, Waltham, MA. [4] A.S. Konopliv et
al. (2013) Icarus,
http://dx.doi.org/10.1016/j.icarus.2013.09.005.
[5] A.W. Beck, HY. McSween (2010) Meteoritics &




