Organic Material in the Matrices of Unequilibrated Ordinary Chondrites: A Coordinated STXM-TEM Study

H. G. Changela¹, C. Le Guillou² and A. J. Brearley¹

1 University of New Mexico, Dept. of Earth and Planetary Sciences NM 87131, USA. 2 Ruhr-Universität Bochum, Inst. für Geologie, Mineralogie & Geophysik, Bochum, Germany. Email: Changela@unm.edu

Methods

Organic material (OM) in carbonaceous chondrites (CCs) makes up to ~2 wt. % carbon that is insoluble and is mostly found in their matrices [1]. Solid OM inclusions are randomly distributed in CC matrices as submicron features with various morphologies. They typically display IOM-like aromatic (C=C) - ketone (C=O) - carboxylic (COOH) functional chemistry [2]. In contrast, less than 0.4 wt. % carbon is found in unequilibrated ordinary chondrites (UOCs) [1]. There are limited reported analyses of OM in situ [3]. Ultimately, in situ observations of OM in planetary materials will constrain its spatial context and distribution. In the UOCs, it will also allow the evaluation of the effects of aqueous alteration and thermal metamorphism at demonstrably higher temperatures/cooling rates than CCs [3, 4]. Previous studies have shown OM in the UOCs to be sensitive to its structural properties based on the metamorphic grade of the meteorite that it came from [5]. Some modifications of OM related to progressive aqueous alteration are apparent in the CCs, such as the redistribution of OM that is enriched in aliphatic and carboxylic functional groups [6]. We aim to determine the different forms of OM found in the matrices of different UOC petrologic types, and understand how and why they are present in the following meteorites have been investigated:

- Semarkona (LL3.0), QUE 97008 (LL3.05), Bishunpur (LL3.1), Chainpur (LL3.4), LEW 87284 (LL3.6)

Organic Material in the UOCs

- Random regions of UOC matrix fragments were extracted using FIB.

Bishunpur (LL3.1)

- Phase map (middle) showing the distribution of 3 spectral populations. Note the very low absorption step in the spectra corresponding to the map. Errors are probably induced in the distribution map. The intense spots (green and blue) and bands (red) are the most representative locations of the different spectra. The BF-TEM image shows the red bands to be located in fractures (arrowed) as an intense carboxylic peak. The most diffuse population is the blue spectra which has a higher carboxylic peak than the green hotspots.

Chainpur (LL3.4)

- A spherical hollow OM inclusion in Chainpur surrounded by TiO2 other distinct spectral populations that are in regions containing fine grained crystalline silicates. Qualitatively, the aromatic peak is lowest in the most diffuse (blue) spectra relative to the absorption edge with the carboxylic peak in the reverse order.

Semarkona (LL3.0)

- Each colour shows a population of similar XANES spectra.

Comparison with Carbonaceous Chondrites

- Re: Peak fits of OM inclusions and diffuse spectra from UOCs and the CR chondrites [7]. The aromatic peaks of the UOCs are in a field above the CRs. Their peak areas increase with increasing petrologic type. The COOH peaks in the OM are in a field above the CR3 to 2 but overlap with the CR1 GRO 5577.

Summary & Conclusions

- Organic inclusions with XANES spectra reminiscent of IOM residues (2-peak broad aromatic and slight carboxylic peak spectra) [5] have been identified in situ in random locations within samples of UOC matrix from petrologic types 3.0 up to at least type 3.6.
- Carbonaceous inclusions in the UOCs are more aromatic in character than the CCs, and typically lack any ketone functional groups. This is consistent with higher temperatures experienced by the UOCs when compared with the CCs.
- The low abundance, but ubiquitous diffuse OM in the UOC matrices is both aromatic poorer and carboxylic richer than the discrete inclusions in UOCs, similar to the CCs. The carboxylic peaks in the normalised diffuse OM spectra are higher than the type 3 and type 2 CCs diffuse OM [7], suggesting that elevated temperatures or slower cooling rates during metamorphism may have preferentially lead to OM with higher carboxylic fractions in their spectra relative to the CR diffuse OM.

References

[7] David Kilcoyne and Chithra Karunakaran of the Advanced Light Source, Berkeley, USA and the Canadian Light Source, Saskatoon, Canada are acknowledged for their assistance with this research. Research funded by NASA Cooperative Grant NNH17AP26H to A.J. Brearley (PI).