Mineralogical Characterization by XRD of Gypsum Dunes at White Sands National Monument. Application to Gypsum Detection on Mars

Barbara Lafuente¹, Sara King², Lori Fenton², Janice L. Bishop²,³, Philippe Sarrazin², David Blake¹, Robert T. Downs¹, Briony Horgan⁴, Gabriel Garcia²
¹University of Arizona, Tucson, AZ ²Carl Sagan Center, SETI Institute, Mountain View, CA ³NASA Ames Research Center, Moffett, Mountain View, CA ⁴Arizona State University, Phoenix, AZ

Introduction

- The presence of gypsum (CaSO₄·2H₂O) in Olympia Undae was reported on the basis of OMEGA imaging spectrometer data [1]. The goal of this study is to clarify our understanding of the origin and history of the gypsum-rich sand dunes at Olympia Undae using the terrestrial analog White Sands dune field [2].
- Field and lab analysis of mineral abundance and grain size have been performed on White Sands material from several dunes using a visible/near–infrared (VNIR) spectrometer [3] and an X-ray diffraction system (XRD).
- Here we present the analysis carried out using a Terra (Olympus NDT) portable field X-ray diffraction (XRD) instrument (Fig. 1).

X-ray diffraction (XRD)

- XRD analysis consists of interpreting the positional relationship of diffracted intensities. Each crystalline phase has a unique diffraction pattern, and consequently XRD is the gold standard for identifying materials.
- Calcium sulfates can be easily distinguished by their XRD patterns (Fig. 2). Depending on the amount of water within the crystal structure, calcium sulfates are found in three different phases: gypsum (CaSO₄·2H₂O), bassanite (CaSO₄·0.5H₂O) and anhydrite (CaSO₄), and the sulfate hantebachite (CaSO₄·0.5H₂O).
- The Terra XRD instrument is based on the technology of the CheMin (CHEmistry and MiNERalogy) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity, which is providing the mineralogical and chemical composition of scooped soil samples and drilled rock powders collected at Gale Crater [4].
- Using Terra at White Sands contributes to “ground truthing” gypsum–bearing environments on Mars. Figure 3 shows the geometry of the CheMin instrument, similar to that of the Terra instrument.

Experimental

- Samples from the dunes 1, 2 and 3 were analyzed in the field by XRD. Relative mineral abundance was estimated using the Reference Intensity Ratio (RIR) method which requires calibration against standards [5].
- In order to analyze the grains in dune 3 with more detail, size fractions were prepared in the lab from samples collected at flag 4 farther up the dune) and 7 (farther down the dune).
- Samples collected from the crest of ripple 1 at dune 3 contained coarse grains with different colors [2]. The sorted grains were analyze by VNIR [3] and Raman spectroscopy.

Results

- Samples from dune 1 and 2 show quartz abundance at 5.6 and 2.6% respectively, while dolomite has been detected in some locations at dune 3 as high as 80% (Fig. 4).
- At dune 3 (Figs. 5-6), gypsum is dominant for all grains < 1000 μm. Dolomite is more common in the coarse grains (> 1000 μm). The flag 7 sand shows a greater abundance of dolomite in grains > 1000 μm (62%) than the flag 4 (36%) as expected because of their location on the dune. Coarse grains are heavier than gypsum so they are not as easily moved by wind and tend to be rolled along the ground.
- The brown grains are composed of gypsum and dolomite while the green grains contain prehnite. The pink grains contain microcline and from VNIR results, also hematite, gypsum and calcite [3]. The transparent and the white grains are primarily quartz and gypsum, respectively.
- The identification of gypsum in most of the sand by XRD is unambiguous even when it is mixed with other phases.

Summary

References, Acknowledgements, and contact


Acknowledgements: funding from NASA’s PG&G program is much appreciated.

Contact information: barbaralafuente@email.arizona.edu / lfenton@seti.org / jbishop@seti.org.