Rheology of lava flows on Mercury: an experimental study
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Lava flow morphology is strongly controlled by the transition for Hawaiian basalts basalts on Mercury. The second is a Northern Volcanic Plains (NVP) .
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- | temperature (T), composition (X), crystal fraction (¢c) phology. These data may allow Fig 2: Polar stereographic projection of topography of Mercury's northern ositional evoltion of the
& | and vesicularity (¢v). Moreover, effusion rates, as | emplacement  temperatures e o Husuatet b et reen betweon, Puben - an D o the resichel
S | well as environmental influences such as surface | andlor rates to be determined Rachmaninoft crater (Zuber et l. 2012). mf\ellv e Tor omeh oo
(<] medium, slope and ambient temperature and from remote sensing observa- We assesed the full range viscosity of the mentg by electron éie:eré-
)| pressure conditions influence the rheological tions of the surface morphology liquid and supercooled liquids by concentric b Y luated tal
=< | Dbehavior of multi-phase lava flows developin of different volcanic fields on ; ; - probe, ~ evaluai crys
[z y P! ping M cylinder and parallel plate viscometry (fig 3). volume fraction and crystal
@ | different morphologies. ercury. Holding the melts at different temperatures aspect ratios. We also
o ey example basalt flows transition from smooth Eahl@hoe at below their liquidus enabled us to checked the Fe-redox state
pahoehoe to blocky ‘a’a at higher viscosities and MaunaUlu - determine the rheological response of of each experimental prod-
strain rates. We have previously quantified the £l liquid-crystal ~ suspensions. ~After each uct by a combination of wet
rheological conditions of this transition for Hawaiian o experiment, the sample quenched in water chemistry and UV/Vis spec-
basalts [1], but lavas on Mercury are very different in s S to preserve the texture at measurement troscopy.
ioomposmon and expected crystallization history. g % temperature.
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Here we determine experimentally the temperature Mauna Ulu &3 3 : : o H
and rheological conditions of the pahoehoe-‘a’a @ ) And here .IS
transition for two likely Mercury lava compositions. what we find
Lsent strain rates to our two-phase suspensions ° Melts equilibrated at subliquidus temperatures: Liquid viscosity:
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Crystal-liquid suspensions exhibit pseudo-plastic behaviour meaning they are We observe a general apparent viscosity increases 0 S T e 975 0
becoming more fluid with higher strain rates. Development of a yield strength with higher crystal fractions and increasing degree of ! ! ' ; ; i
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basalt and NVP overlap, Enstatite basalt is generally
more fluid under the same strain rate regimes. 10000/K
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