COMPOSITIONAL AND GRAIN-SIZE VARIATIONS IN ILMENITE REFLECTANCE SPECTRA

M. Morison1,2, D. Applin2, E. Cloutis2, M. R. M. Izawa3, P. Mann2, and S.A. Mertzman2, 1Department of Geography, University of Waterloo, 200 University Ave W, Waterloo, Ontario, Canada, N2L 3G1 [mmorison@uwaterloo.ca], 2Department of Geography, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada, R3B 2E9, 3Department of Geosciences, Franklin and Marshall College, Lancaster, PA, USA, 17604

Introduction

- Lunar ilmenite (FeTiO3) (and related Fe-Ti-oxides) occurs in concentrations up to 25% (by volume) in lunar mare basalts [1].
- Ilmenite reduction has been investigated over past decades as a means to generate O3 for support life and propulsion [2], with the potential to yield metal byproducts for construction [3], and aid in lunar 4He detection [4].
- Previous work has related spectral properties, such as 402/564 nm ratios were acquired from 350-1100 nm at a spectral resolution of 0.47 nm. Biconical-directional reflectance spectra were acquired from 350-1100 nm at a spectral resolution of 0.7 nm (resampled to 1 nm) with an ASD FieldSpec Pro HR spectrometer (emission = 0° and incidence = 30°). Reflectance spectra were acquired at the Planetary Spectrophotometer Facility at the University of Winnipeg.
- Ultraviolet (200-400 nm) and visible near-infrared reflectance (350-1100 nm) were acquired from 350-1100 nm at a spectral resolution of 0.7 nm (resampled to 1 nm) with an ASD FieldSpec Pro HR spectrometer (emission = 0° and incidence = 30°). Reflectance spectra were acquired at the Planetary Spectrophotometer Facility at the University of Winnipeg.

Methods

- Terrestrial ilmenite has been shown to be a good spectral analogue of lunar ilmenite [10].
- Twenty-two ilmenite samples (from a variety of localities including St. Urbain, Quebec, North Carolina, Italy, Madagascar, Norway, and synthetically produced) were collected, crushed, and sieved to a variety of grain sizes ranging from <45 μm to 500-1000 μm.
- Ultraviolet reflectance (200-400 nm) spectra were measured with an Ocean Optics Maya2000 pro miniaturized spectrometer (emission = 0° and incidence = 0°) equipped with a HC-1 grating and a 30 μm slit width, yielding an effective spectral resolution of 0.47 nm. Biconical-directional reflectance spectra were acquired from 350-1100 nm at a spectral resolution of 0.7 nm (resampled to 1 nm) with an ASD FieldSpec Pro HR spectrometer (emission = 0° and incidence = 30°). Reflectance spectra were acquired at the Planetary Spectrophotometer Facility at the University of Winnipeg.
- Composition of Fe2+/Fe3+ ratios were acquired at Franklin and Marshall College by X-ray fluorescence and wet chemistry [11].

Results

- Results – Grain Size
 • Reflectance spectra of synthetic ilmenite (ILM201, Figure 1) and ilmenite sample ILM103 (Figure 2) presented for various grain sizes.
 • Band depth at 500 nm appears to increase with grain size independent of general brightness differences in five grain sizes of ILM103 (from <45 μm to 500-1000 μm).

- Results - Composition
 • Spectral variations of four compositionally distinct species are presented in Figure 3, including a sample with notable hematite bands (ILM101), spectrally comparable to hematite sample HEM105 (Figure 1).
 • Deeper absorption bands at 220 nm and 300 nm (at Fe2+/O and Ti3+/O charge transfers) in compositionally-purest ilmenite species (ILM103).

Acknowledgements

This research was funded the Natural Sciences and Engineering Research Council of Canada, the Canadian Space Agency, and the University of Winnipeg. The authors also wish to thank the Canada Foundation for Innovation, the Manitoba Research Innovations Fund, the Canadian Space Agency, and the University of Winnipeg for supporting the establishment of the Planetary Spectrophotometer Facility where this work was conducted. Mertzman thanks the National Science Foundation for X-ray fluorescence lab upgrade support through MRI-0923224.

References