Zirconium Isotope Abundances in Single Mainstream SiC Grains and the 13C Pocket Structure in AGB Models

Nan Liu1,2, Roberto Gallino3, Sara Bisterzo3, Andrew M. Davis1, Michael R. Savina2 and Michael J. Pellin1,2. 1Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637, USA (inmale@uchicago.edu); 2Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA; 3Dipartimento di Fisica, Università di Torino, Torino I-10125, Italy.

Introduction

AGB Model Uncertainties
- Nuclear inputs
 - Neutron capture cross sections
 - Maxwellian Averaged Cross Sections (MACS)
 - 23Ne(a,n)28Mg reaction rate
 - A factor of 4 uncertainty at relevant AGB stellar T
- Stellar model
 - 13C pocket formation
 - Uncertain mixing processes occurred during and/or after formation.
 - Fig. 3 of Lugaro et al. (2014)
 - Black dots: presolar SIC from Nicolussi et al. (1997) & mainstream SIC, Barzyk et al. (2007)
 - Red dots: presolar graphite, Nicolussi et al. (1998)
 - Colored lines with symbols: their AGB model predictions for carbon-rich phase;
 - Colored lines without symbols: predictions for oxygen-rich phase.

AGB Model Predictions for Zr Isotopes
(Lugaro et al. 2014)
- New n-TOF cross sections
- Stellar model (Karakas 2010)
- Failed to explain mainstream
 - Grains with $\delta^{(28/29/30)Zr} > -50\%$

Grain Data & Torino AGB Model

Previous RIMS Data
- Nicolussi et al. (1997) & Barzyk et al. (2007), delta-notation with 2σ errors

A Parameterized 13C Pocket

Previous Constraints (Liu et al. 2014a)
- Constraints on the 13C pocket
 - 6Ba $> -400\%$, $< -400\%$
 - 13C profile
 - Three-zone
 - Zone-II
 - 13C mass fraction
 - D3–U1.3
 - Around ST
 - 13C pocket mass upper-limit
 - $18.6 \times 10^{-4} M_{\odot}$
 - 13C pocket mass lower-limit
 - $7.4 \times 10^{-4} M_{\odot}$

K4K–K4K (K4K:lower-limit by Käppeler et al. 1994)

New n-TOF Zr neutron capture cross-section(σ_{asc})

Result & Discussion

Effect of the 13C Pocket Structure
- Why are $^{80/81/82}$Zr predictions affected by the 13C pocket?
 - $^{80/81/82}$Zr: neutron magic, the bottleneck of the s-process path;
 - $^{81/82}$Zr: MACS values deviate from the 1/v_T rule by 30% while that of 82Zr closely follows this rule.
- What is the effect of the 82Zr predictions? 82Zr predictions are shifted by 100%; better match with the grain data can be achieved;
- Better determination of 82Zr MACS is needed to evaluate the necessity of Zone-II models.

Effect of the 13C Pocket Mass
- To summarize, Sr, Zr and Ba isotopes in mainstream grains all consistently point towards a smaller 13C pocket;
- Different 13C pocket structures should be a result of different degrees of mixing during or after the formation of the 13C pocket;
- For the first time, we discovered the smoking guns of the 13C pocket (Sr, Zr and Ba); the derived constraints will guide future simulations of 13C pocket formation;
- Correlated Sr, Zr and Ba isotope measurements in acid-cleaned presolar SiC grains will be done soon with CHILI.

Conclusion

References