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4 vormnen O == Access the inaccessible!
Highland Terrain Hopper: a cutting edge planetary locomotion system

Field geoscientists need to collect three-dimensional  Exploration of the Valles Marineris landforms on Mars

data n order tocharacterise the ithologc suceession There are few limitations in the type of scientific payload conventional exploration rovers can carry, from geology and

geophysics to geochemistry and exobiology. They lack two skills, however: the ability of working on uneven or unstable terrain,

and structure of terrains, recontruct their evolution, like in canyons and mountains, and on solid bodies having gravity too low for the friction between the wheels and the ground to
and eventually reveal the history of a portion of the generate robot displacement. ASTRONIKA Ltd. and the Polish Space Research Centre are designing the Highland Terrain Hopper,
planet. This is achieved hy walking up and down a small (diam 50-100 cm), light (3-10 kg), and low-cost jumping robot that may survey any type of landscape. It may assist other

mountains and valleys, interpreting geological and types of robots, or humans, in accessing difficult terrain, or even replace them for specific measurements or campaigning

geophysical traverses, and reading measures made at
station located at key sites on mountain peaks or
rocky promontories. These activities have been

Hopper capabilities versus rover capabilities

rover Highland Terrain Hopper
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and measuring the pristine orientation of lunar magnetic field in order to test for the first time if and when a dipolar lunar core dynamo was operating on
the Moon [10].

Crust

early volatile delivery [2] and the very early climate, as well as assessment of
past habitability. Hoppers carrying a ground-penetrating radar could probe the

subsurface and look for buried ice; with geophones the present geologic activ- Geumnrphnlngy , Structure an mmeralngy of central peaks

TRE iU HESPERA i X ity and surface dynamics (slope processes, ice movement in rock- or dust- ARISTARCHUS TYCHO
T T e T | covered glaciers [3, 4], RSL[5] etc.) could be monitored and identified [6]; Geomorphology and structure from orbit
4500 4000 3000 2000 1000 milonyears 0 3 magnetometer would provide the first in situ measurements of Martian rock

magnetization induced by the early dynamo [7].

Natural satellites, asteroids, Near-Earth Objects

Jumping is the best locomotion method on these low-gravity bodies, where gravity is too low for friction to trigger displacement between the surface and wheels.
Highland Terrain Hopper efficiency increases with decreasing gravity.

Phobos

Investigations of the rim
and slopes of the Stick-

Asteroids and NEOs

Like for Phobos, rovers are not able to operate on such

objects. In situ mobile exploration of asteroids both for
ney crater, and the semwes s g scientific research and resource inventory [9] faces
grooves and crater chains _._';-.:;“ '- -‘-,.-" W@ formidable challenges such as unpredicted terrain
observed next to it in % "5 roughness and extremely low gravity. Hoppers capabili-
‘ LR ties are adapted to such harsh conditions.

Asteroid 25143 ltokawa as viewed from Hayabusa in 2005, The
surface Is covered with boulders of various size

. SELENE Multiband Imager colour
composite image of Tycho's cen-
tral peak, emphasizing almost pure
¢ anorthosite in the lower part (blue)
8 and up to 10% of Ca-rich pyroxene
" in the upper parts (yellow) [12].

Clementine UVVIS colour-composite ratio
image of Aristarchus’ central peak highlighting
variations in mineralogical assemblages [11].

tion [8].

Maximum jumping height and length is 1.5 m on Earth, corresponding to 4 m on Mars, 3 m on the Moon, and hundreds of meters or more on Phobos and asteroids.

Payluad gxamplgs Payload weight is limited to 3-5 kg per hopper. The payloads subsystems are integrated and miniaturized together with S e RIMA HADLEY

the main robot system in order to save weight; mobile parts are not allowed. A typical payload may consist, for instance - Gl TR PRy Com APOLLO 15 LANDINE SITE
in two to three of the following instruments: stereo visible and multispectral cameras, gamma-ray spectrometer, ground resistivity meter, and ground-penetrating L
radar; plus a clinometer, a SDT or AMR magnetometer, flashing LEDs, pressure, temperature, and humidity sensors.
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The Highland Terrain Hopper is at the stage of prototype development, laboratory testing and field testing (ESA Technology Readiness Levels 3 and 4) % ASTRONIKA P NGPAN ,2? ASTC




