
Enabling Science and Exploration Objectives with Lunar Services

Mobility Services

challenging terrain, and pole-to-pole access.

Rugged frame, with extra protections to manage harsh lunar environment.

Sized for long range traverses, permanently shadowed regions, and survival of the lunar night for both the rover and its payloads.

SmartSat™

Software framework for on-

orbit reconfigurability and

mission flexibility.

COMPASS/Horizon[™]

Automated mission planning and

satellite command & control.

Communication Services

ParsecTM **Commercial Service Relay Network**

HiveStar™

Mesh networking for integrated contact management and task distribution.

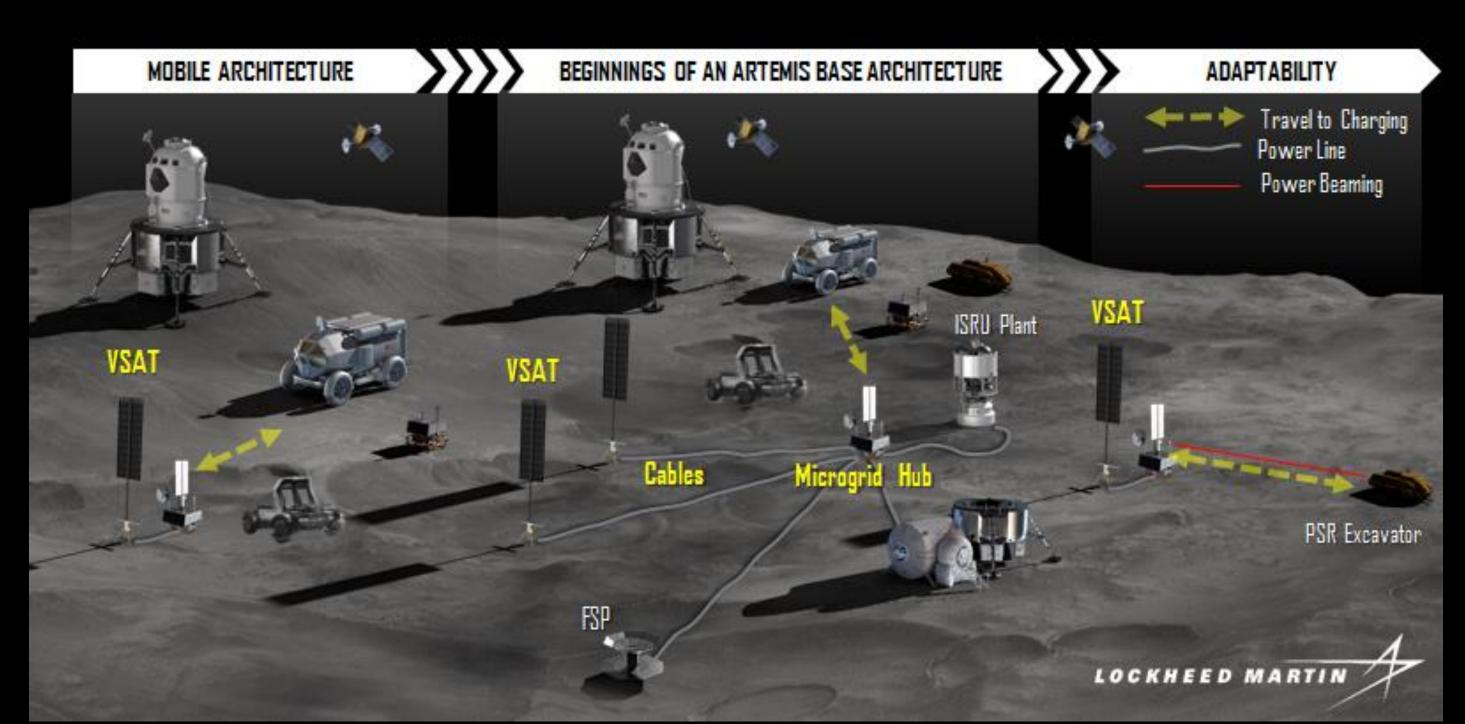
Position & Navigation

Informing assets and systems on the lunar surface of their precise location to keep missions on target.

Designed to minimize need of maneuvers, close the link at useful rates, and maximize coverage of lunar "hot spots" like the South Pole

Deep Space -SmallSat™ Bus

A modular, capable platform first developed for Janus and the Lunar Trailblazer missions


Power Services

Vertical Solar Array Technology (VSAT)

- Reducing barrier of entry for lunar surface assets by providing a mobile power station
- Catalyzing commercial services by reducing environment risk for long-term lunar surface assets
 - Dust mitigation, surviving lunar night

Fission Surface Power (FSP)

- Enabling higher power levels to support increasing habitation and in-situ resource utilization (ISRU) needs
- Providing power generation that is steady through the lunar night

C. M. Edwards, A. Marcinkowski, M. Yant, T. Cichan Lockheed Martin Space. 12257 S Wadsworth Blvd, Littleton, CO 80127 Contact: adam.marcinkowski@lmco.com

Lunar Mobility Vehicle (LMV) Offering commercial services for a broad and diverse range of partners including NASA, Industry, and International customers

L5 Autonomy & Sensors

Ruggedized Design

Long Life

Paradigm Shifting Mobility

Evolvable and Scalable

mass payload bay capacity.

Robotic Arm For enhanced interaction and partner payloads.

GM Ultium Battery

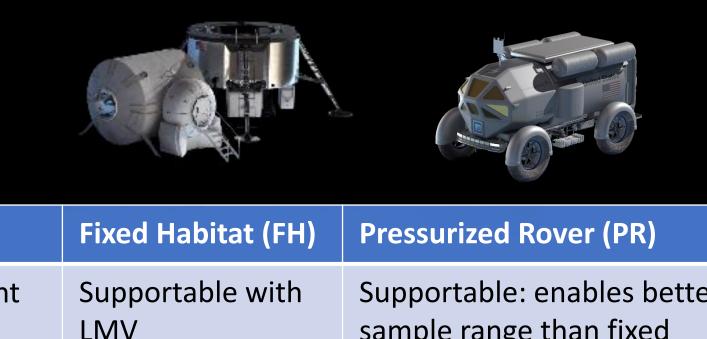
High Data Rates

Early, 2024 Deployment

Multi-Node Evolution

Lunar Surface PNT

Multi-Use Satellite Platform


• High Data Rates Designed to support datantensive robotic and human-rated missions long into the future.

Science Objectives Enabled by Mobility Services

- Performed study of how mobility aids several science objectives
- Investigated activities and equipment that would support these science objectives
- Compared how supportable those activities and equipment would be with a fixed habitat versus a pressurized rover

Science Objective	Activity	Equipment	Fixed Habitat (FH)	Pressurized Rover (PR)
Sample Gathering and Transportation	 Regolith from craters and slopes Sub-surface water ice and dry ice Sample storage in a controlled environment Transportation of cached samples to ascent element for delivery back to Earth Conduct cryogenic sample return 	 Sample collection equipment Sample return equipment 	<section-header><section-header></section-header></section-header>	Supportable: enables better sample range than fixed habitat and has higher volume capacity per trip than LMV
Sample Characterization	 Sample analysis Composition Age Physical characteristics Volatile investigation 	Glove boxGeology tools	Significant mass addition, maybe feasible	Characterization is unlikely to be performed on PR, but can have cold stowage to preserve a diversity of samples
Surface Dust Environment Characterization	 Dust impact studies on electrical and mechanical assemblies (e.g., mechanisms, regenerative power systems, controls) both on the surface and internal vehicle systems Study electrical properties of lunar dust "Dust mapping" studies to track dust transport into habitable environment 	 Filtration Air monitoring Scientific payloads to study dust Tools to measure dust build up on seals and surfaces both internal and external to habitable volume 	<section-header></section-header>	Supportable: enables better sample range, more variety of locations to observe terminator plasma interaction with dust
Characterization of EVA Sites	 Document EVA site characteristics, sampling, and instrument deployment Real-time transmission of data from in situ science instrumentation that provides real-time science collaboration and documentation for site characteristics 	 Cameras, sensors High bandwidth communication that is capable of real-time data transmission 	Supportable with LMV	Supportable: enables ability to consider more variety of locations for EVA
Survey/Mapping	 Imagery of regolith, crater rims, sloped regions, lava channels/tubes, high-albedo regions Surveys of regolith and resources (identification, characterization and localization) Topographic, gravitational and thermal (for shadowed regions) surface maps Sub-surface maps of lava channels and tubes 	 Cameras Sensors 	<section-header></section-header>	Supportable: has better range over fixed habitat
General Surface Environment Characterization	 Measurements of transient phenomena, including day to lunar night transitions, response to time-varying solar wind and chemical-species migration Sub-surface temperature and seismological measurements 	• Sensor suites	Supportable, enhanced by LMV	Supportable: both PR and LMV enable more variety of locations to observe solar wind and other phenomena, and enables crew to assist with deployment
Long Term Temperature Sensing	 Measurement of surface and subsurface (ground) temperature via deployment of long- lived instrument packages on moon Temporal sampling over a lunar day/night cycle is ideal but temporal spacing over one lunar rotation requires more time than is available by the crew on the lunar surface (for HLS time durations) 	 Capability to transport and deploy temperature sensing packages 	<section-header></section-header>	Supportable: both PR and LMV have better range over fixed habitat when deploying long- duration sensor packages and enable crew to assist deployment
In-situ Sample Characterization	 Inclusion of in-situ measurement tools to characterize rock samples and take volatile measurements to characterize volatile losses 	 Additional instrumentation required beyond sample collection, return and IVA analysis equipment 	Supportable, enhanced by LMV	Supportable: has better range over fixed habitat

