

LEAG 2017

Oct 10, 2017

Gwanghyeok Ju KPLO Program Office

KARI (Korea Aerospace Research Institute)

Agenda

- Korean Lunar Program Overview
- KPLO System & Instruments Overview
- Pre-phase A Study for Lunar Lander
- Project Status & Way Forward

Korean Lunar Program Overview

Phase 1: Domestic Lead / International Collaboration

- Technology demonstration for planetary exploration
- International cooperation
- Establishing deep-space network

Phase 2: Domestic Development

- Science and/or Technology Demonstration?
- Landing Site Selection ?
- International Collaboration still needed?
- Energy Source

- Lunar science payloads (4)
- International payload (2-3)
- DTN (Delay Tolerant Network)

Deep Space Antenna

/Ground Station

- Deep-space antenna
- Science/Imaging data processing
- TM & TC Operation
- PDS compatible archive

- Lunar rover
- Scientific instruments

- Trans-lunar injection
- 550kg to trans-lunar orbit

- Rover ground test model
- Landing site selection
- RHU/RTG for the lander mission
- Conceptual design for upper stage of launch vehicle

1st Phase Overview

Program Overview

Goal Enhancement of the lunar exploration technology and science

Duration 2016 ~ 2020

Budget 197.8B KRW (~170M USD)

Orbit Polar orbit 100km

Wet Mass 550kg Mission Life 1 year

Launch End of 2020

Tasks

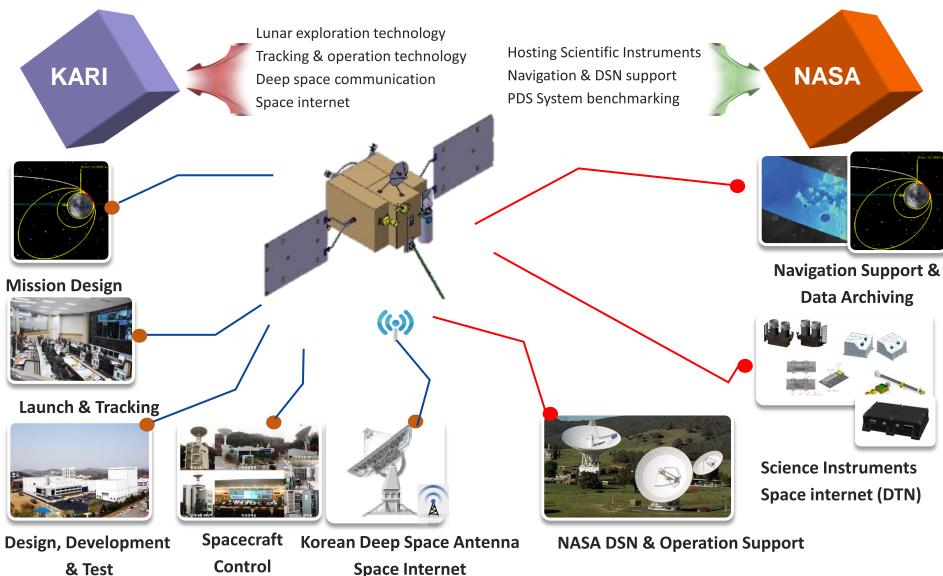
- System and Bus development
- Building DSN Ground-station
- Scientific Instruments (Domestic/International)
- Space Internet(DTN) demonstration
- Pre-phase A study including landing technology, rover, RTG, ISRU, site selection etc.

KPLO Mission Objectives

1. Development of critical technologies for lunar exploration

- Developing lunar exploration technologies (Orbiter bus; Lunar orbit insertion and operation technologies; Communication and control; Navigation)
- Construction of a ground station for the purpose of deep-space communications

2. Scientific investigation on lunar environment

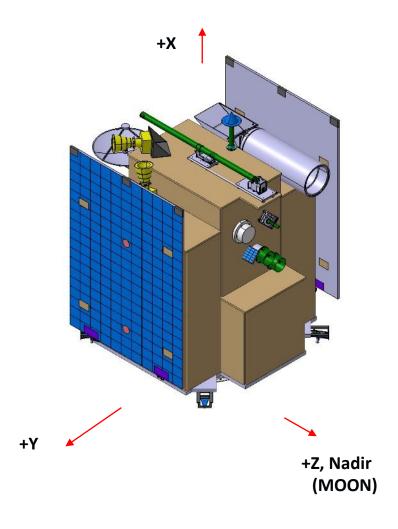

- Establishment of lunar topographic map for support to select future lunar landing sites
- Survey of lunar resources and Investigation on the radiation environment and surface environment of the Moon

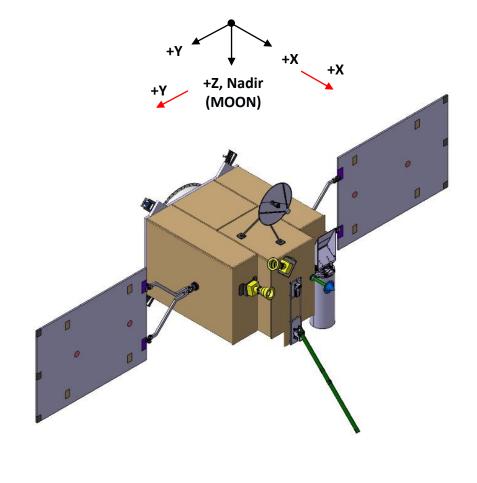
3. Realization and validation of new space technology

 Technology demonstration and validation of space internet technology (DTN; Disruption Tolerant Network)

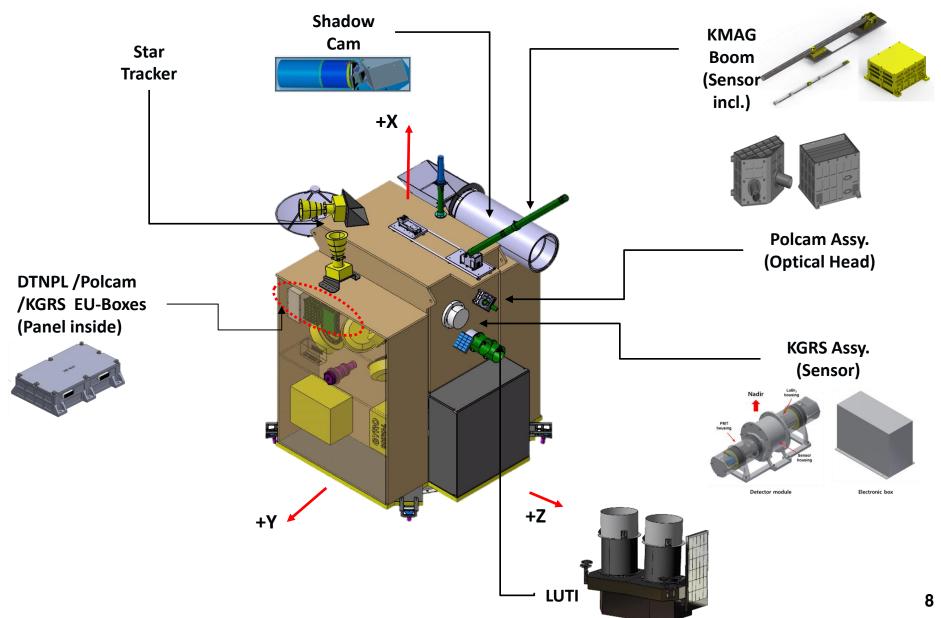
Collaboration with NASA

KPLO Baseline of SDR


Item	Parameter (Baseline)		
Launch Mass	550kg		
Power @ EOL	760 Watt, (1-wing, 2-axis gimbal S/A) w/ unregulated 28V		
Mission Life	1 Month (Trans-lunar) + 1 Year (on-orbit)		
Lunar Transfer Trajectory	Phasing Loop Transfer		
Propulsion System	Monopropellant System OMT: 30N x 4 ACT: 5N x 4		
Mission Orbit	Lunar Polar Orbit 100 \pm 30km, Incl. 90 $^{\circ}$ \pm 1 $^{\circ}$		
Communication	CCSDS compatible S-band(uplink): 500bps@LGA, 1kbps@HGA S-band(downlink): 512bps@LGA, 8.192kbps@HGA X-Band(downlink): 5Mbps@HGA (tbd)		
Pointing Accuracy	0.1°		
Ranging	OD: < 660m/300m (RMS/radial) (1sigma) OP: < 6km/1km/1km (along/cross/radial) (1sigma)		
Reliability	0.7[TBD]		


KPLO Configuration

Stowed


Deployed

KPLO Instruments Accommodation

KPLO Scientific Instruments: Scientific Objectives

LUTI

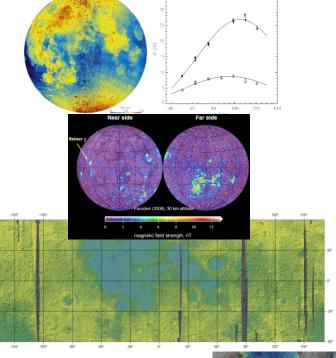
- Obtain high-resolution images (possibly stereo) of future landing sites (2nd stage lunar mission)
- Target observation of interesting places on the Moon

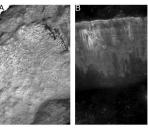
PolCam

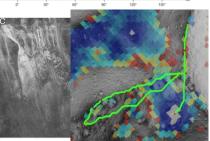
- Polarimetric imaging survey of the entire lunar surface except for the pole regions at various phase angles (0°~120°) and spectral bands (320, 430, 650nm) → First polarimetric map of near-/far-side of the moon
- Investigate the characteristics of lunar regolith and Ti contents (varying latitude, longitude, mare & high-lands)

KMAG

- Investigate the origin of the crustal magnetism of the Moon (Impact/Dynamo etc)
- Characteristics of the lunar magnetic anomalies

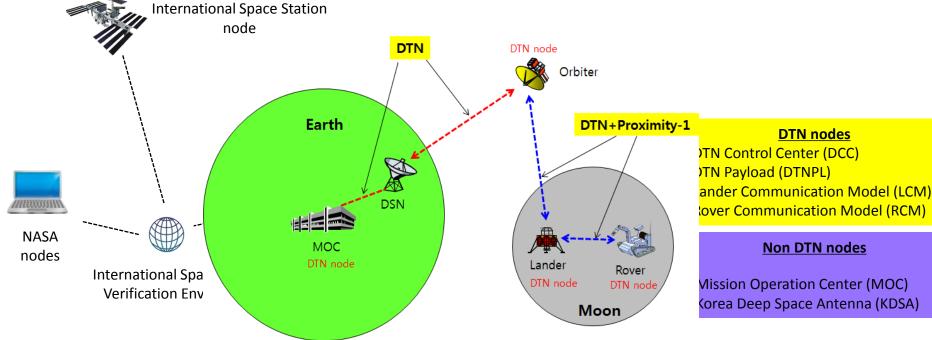

KGRS


- Map the distribution of major elements (Mg, Ni, Cr, Ca, Al, Ti, Fe, Si, O, U, He-3, Water) on the lunar surface and the beneath of the surface (up to 50cm)
- Geological and geochemical activities of the Moon
- Obtain radiation map of lunar environment

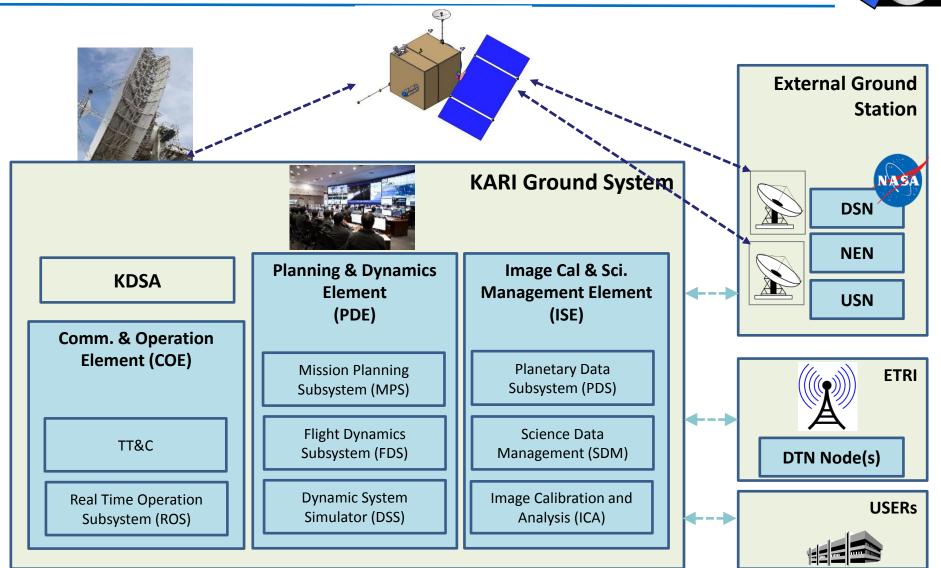

ShadowCam

- Map albedo patterns in PSRs and interpret their nature
- Map the morphology of PSRs to search for and characterize landforms that may be indicative of permafrost-like features
- Provide hazard and traversability information within PSRs for future landed elements

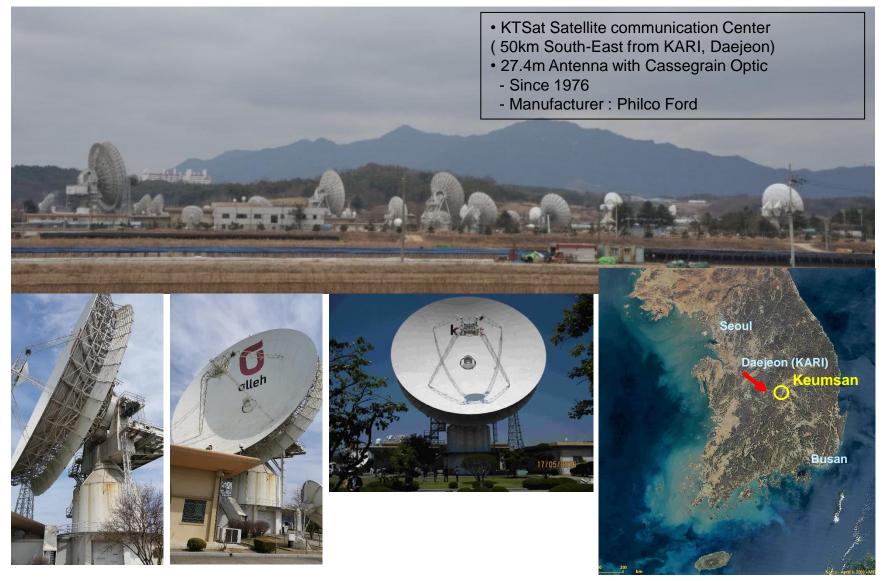
KPLO Scientific Instruments: Features & Specifications

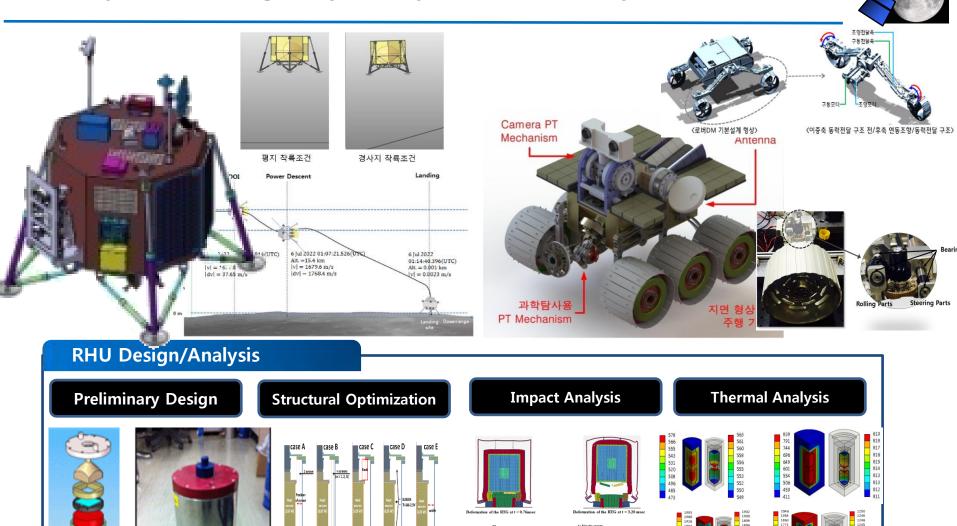

Instrument	Layout	Features	Specifications
LUTI (KARI+) PI : Haeng Huh		High dynamic range EO Cassegrain type telescope Push broom camera w/ linear CCD (450-850nm)	Mass: <15kg GSD: 5m at 100km Swath: 8km MTF: 10%
PolCam (KASI+) PI : Young Choi		Push broom scanning Polarimetric & photometric meas urement	Mass: 3kg. FOV: 10deg Polar: 430, 650nm Photo: 320nm Data: ~8Gbits/day
KGRS (KIGAM+) PI : Kyeong KIm	Nade was a series of the serie	Gamma-ray detector LaBr3 main detector BGO/PS shielding detector	Mass: 5kg Energy range: 0.03-10MeV Energy res: < 4% @ 661 keV Data: 25.Gbits/day
KMAG (KHU+) PI : Ho JIn		Boom/Hinge/Actuator Flux Gate Magnetometer sensor Measuring the magnetic field closer to lunar surface (<70 km)	Mass: 3.5kg, Length: 1550mm Measure range: ± 1000 nT Resolution: < 0.05 nT at 10 Hz Data: < 291Mbit/day
NASA ShadowCam (ASU) PI: Mark Robinson	Thistops Thistops and Adapt Flair and Adapt Flair proud and Relater	LRO NAC heritage w/ Ti adapter TDI detector(~3000 pixels with 1 28 TDI lines) 800x sensitivity	Mass: <15kg Resolution: 1.7m@100km SNR: >100

Space Internet


Objective

- Establish DTN(Delay Tolerant Network) for Space Internet between GS, Orbiter,
 Lander & Rover
- Apply Mobile/Satellite Communication Network Standard to Lunar Network
- Maximize IT-based Strong Potentials from Mobile Communication Industry


Ground Segment



Keumsan Satellite Communication Center

Conceptual Design by Pre-phase A Study

Time history on the kinetic, internal and total energy of the RTG under $V_{impact} = 56.7 \text{ m/s}$

Research Topics supported by Pre-phase A Study

Lunar
Mapping
Tool &
Archive

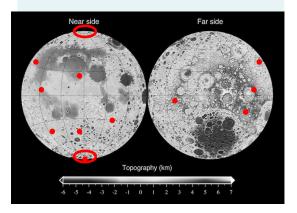
- Lunar Image Generation Tool Development)
- Korean PDS Buildup compatible with NASA PDS & ESA PSA

Site Selection

- Illumination & Communication Conditions Analysis for Target Site Using the Previous Lunar Images from KPLO, LRO & KAGUYA, or its combinations
- Finding Ideal Site for proper scientific objectives
- Finding optimal imaging area in order to obtain the optimum imaging schedule with high res.
- Landing Site Risk Analysis

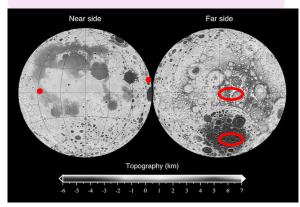
Landing GNC & Rover Technology

- Sensing & Perception: 3D Sensing, Onboard Mapping, Onboard Science Data Analysis
- Mobility & Manipulation : Extreme-Terrain Mobility, Robot Navigation with Localization
- Autonomy: Autonomous Targeting, ALHAT(HAD, TRN), Activity Planning, Scheduling & Execution
- Modeling & Simulation: Touchdown Dynamics, Landing Modeling & Simulation

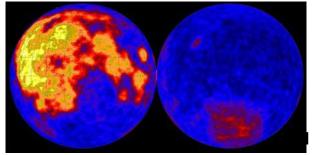

Evaluation Platform

- Lunar Lander Demonstrator Setup
- Landing Site General Assessment Software Tool Development
- End-to-End Performance Simulator Setup for KPLO & Lunar Lander
- Lunar Science Research & Strategic Knowledge Gap Formulation

Landing Site Survey associated w/ Instrument Candidate


Lunar Characterization & History

- Mineralogical Composition and Tetrology & Chronological Measurement (VIS/IR Hyperspectral Camera, X-ray Spectrometer): Nectaris basin (35°S, 42°E), Orientale impact melt (South pole), Copernicus floor (10°N, 20°W), King rim (5.5°N, 121°E), Ancient crust (30°N, 160°E), Aitken basin (21.5°S, 160°W)
- Lunar Volatile Investigation: (MWIR Spectrometer): Orientale impact melt (South pole)
- Meteorite Impact Study(Camera): Tsiolkovskiy (20°S, 130°E)


Lunar Science & Environments

- Terrain Investigation (Panoramic Camera): Landing Sites incl.
 Apollo Sites
- Lunar Dust & Water Study (LIDAR, Spectrometer): Polar shadows(near each pole), dawn/dusk
- Lunar Surface Environment Change Study by Solar & High Engergy Particles
- Magnetic Field Investigation & Plasma & Radiological Environment Measurements: Reiner Gamma(7.5°N, 59°W), Marginis swirls(15°N, 90°E)

Investigation on Lunar Mineral Resources

- Uranium (gamma ray spectrometer):
 KREEP Enriched region, high abundance of U, Th, K
- He-3 (wide band & gamma-ray spectrometer): Exploration of He-3 at the region where high deposition of Solar particles, measurement of Ilmenite mineral abundance
- Lunar Volatiles: Utilization of gases, which are accumulated at the lunar surface by solar wind, for construction of a lunar base
- Si, Al (XRS, GRS): Obtaining Si and Al from feldspar enriched area in the highland region
- REE (XRS, NS, GRS): Exploration of KREEP material enriched region

KPLO Programmatic Status Update

Milestone

- KPLO Program Plan Approval (Dec 2014)
- Program Start (Jan 2016)
- Kick-Off Meeting (Mar 2016)
- Science Payload Selection (Apr 2016): 3 Scientific Instruments + 1 KARI camera
- Mission Design Review (Apr 2016)
- System Requirements Review (July 2016)
- System Design Review (Dec 2016)
- System Preliminary Design Review (Sep 2017)

International Collaboration

- KARI-NASA Robotic Lunar Feasibility Study Agreement (July 2014) & Study Report (Apr 2015)
- KARI-JPL TAA Signup (Oct 2015)
- KARI-NASA SSERVI Agreement Signup (Dec 2015)
- KARI-NASA LOI (May 2015) & MOU Signup (Dec 2016)
- NASA Instrument AO(Sep 2016), RFI (Dec 2016) & Final Selection (Spring 2017)
- KARI-NASA Face-to-Face Meeting (March 2017, JSC)
- KARI-NASA Instrument PI Meeting (June 2017, KARI)

Way Forward

- Optimize the operational schedule to meet requirements and scientific objectives of all scientific instruments
- Try to implement additional collaborative framework in terms of image processing and science data archiving with international compatibility and interoperability such as PDS & SPICE, etc.
- Pursue to keep pace with Lunar Strategic Knowledge Gaps (STGs) through ISECG
- Keep up with landing site selection study
- Develop design & analysis tool based on open sources as possible
- Hope to develop future collaborative exploration (or planetary science) mission
- Try to reflect Korean lunar landing mission and international collaborative exploration mission(s) to the National Space Development Plan to be updated by the end of 2017

Fly to the Moon