Lunar COTS: Using the Moon’s Resources to Enable An Economical and Sustainable Pathway to Mars and Beyond

Dr. Allison Zuniga, Dr. Dan Rasky, Bruce Pittman
NASA Ames Research Center

LEAG Meeting, Nov. 1, 2016
• President Obama’s 2010 National Space Policy set the following goal for NASA:
 – By the mid-2030’s, send humans to orbit Mars and return them safely to Earth.

• As a result, NASA has established its Journey to Mars and Evolvable Mars Campaign (EMC) to:
 – Investigate architectures to further define capabilities needed for a sustainable human presence on the surface of Mars.
 – Proving Ground Objective: Understand the nature and distribution of volatiles and extraction techniques and decide on their potential use in future human exploration architecture.

• Under the EMC, NASA has also developed a Pioneering Space Strategy with the following principles:
 – Opportunities for U.S. commercial business to further enhance the experience and business base;
 – Near-term mission opportunities with a cadence of human and robotic missions providing for an incremental buildup of capabilities;
 – Substantial new international and commercial partnerships, leveraging the current ISS partnerships while building new cooperative ventures.
Moon as a “Stepping Stone” to Mars

- Prospect and extract lunar resources **to assess the value proposition** to NASA and our partners.
 - Lunar resources may prove beneficial for inclusion in future Mars architectures, e.g., lunar-derived propellant

- **Apply the proven COTS model** to develop low-cost commercial capabilities and services, such as:
 - Lunar Landers and Rovers
 - Resource Prospecting Techniques
 - Lunar Mining and ISRU capabilities
 - Lunar Relay Communication Satellites
 - Power Stations

- **Use campaigns of missions**, instead of single missions, in a 3-phase approach to incrementally develop capabilities and lower risks.

- **Establish Economic Development goals** by incentivizing industry to create cis-lunar markets.
 - NASA should not be sole customer; other customers and new markets should be targeted.

The Moon can serve as a Gateway to Mars and the rest of the Solar System.
 NASA Commercial Orbital Transportation Services (COTS)

- NASA’s COTS acquisition model proved to be very effective in reducing development and operations costs.
 - Studies showed a **10-to-1 reduction in development costs** for Space-X’s Falcon 9 rocket when compared to traditional FAR-based contracts.
 - Studies also showed that ISS cargo transportation services cost significantly less than previous Space Shuttle flights.

- **Best Practices from COTS** are summarized here:
 1. NASA and commercial partners **share cost, development and operational risk** to demonstrate new capabilities for mutual benefit.
 2. NASA makes **long-term commitments to procure commercial services** to help secure private investments.
 3. NASA encourages commercial partners to **target other markets outside Government** to make their business case close. NASA is anchor customer but not sole customer.
 4. NASA uses **SAA’s to enter into partnership** with commercial partners to offer maximum flexibility in design solutions without the full demands and requirements of typical FAR-based contracts.
 5. NASA includes **pay-on-performance milestones** in SAA’s to provide several off-ramps and reduce programmatic risk.
 6. Commercial partners **retain Intellectual Property (IP) rights** and operates and owns final product(s).
Lunar Commercial *Transfer* Services (LCOTS)

GOALS

- Establish affordable and economical cis-lunar capabilities and services.
- Enable development of a sustainable and economical exploration architecture for Mars and beyond.
- Encourage creation of new space markets to further reduce costs.

Approach

1. Use 3-phase approach in partnership with industry to incrementally develop commercial capabilities and services.
2. Begin with low-cost, commercial-enabled lunar missions to prospect for resources and identify hazards.
3. Determine technical and economic viability of extracting lunar resources.
Apollo Pre-Cursor Campaigns – An Historic Context

<table>
<thead>
<tr>
<th>Ranger Campaign</th>
<th>Lunar Orbiter Campaign</th>
<th>Surveyor Campaign</th>
</tr>
</thead>
</table>
| • Designed to take images of the lunar surface until impact.
 • Acquired knowledge of potential landing sites for Apollo missions.
 • Ranger missions 1-6 Failed, 1961-64
 • Ranger mission 7-9 were successful, 1964-64. | • Designed to map the lunar surface to aid in the selection of landing sites for Apollo lunar program.
 • All five missions were successful and 99% of the Moon was mapped, 1966-67. | • Designed to soft land on the lunar surface and help evaluate the suitability of landing sites for Apollo missions.
 • Five of seven missions were successful, 1966-68. |

Each mission in a campaign benefited from learning from prior mistakes and took advantage of economies of scale to lower costs.
NASA’s post-Apollo Lunar Missions in Search for Water

<table>
<thead>
<tr>
<th>Mission</th>
<th>Year</th>
<th>Significant Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clementine</td>
<td>1994</td>
<td>Its Bi-static Radar Experiment provided data suggesting the presence of water on the lunar surface near the poles.</td>
</tr>
<tr>
<td>Lunar Prospector</td>
<td>1998-99</td>
<td>On March 5, 1998, scientists announced that LP’s neutron spectrometer instrument had detected hydrogen at both lunar poles, which scientists theorized to be in the form of water ice.</td>
</tr>
<tr>
<td>LRO</td>
<td>2009-Present</td>
<td>Scientists using LRO’s Mini-RF radar have estimated the maximum amount of ice, as much as 5 to 10% of material, by weight, is likely to be found inside Shackleton crater located near the moon’s South Pole.</td>
</tr>
<tr>
<td>LCROSS</td>
<td>2009</td>
<td>Scientists found evidence that the lunar soil within shadowy craters is rich in useful materials, and also confirmed the presence of water in average concentration of 5.6% by mass.</td>
</tr>
</tbody>
</table>

These NASA missions have provided strong evidence for existence of millions of tons of water-ice on the Moon. We now need ground truth data to confirm.
Lunar COTS Phased Implementation

<table>
<thead>
<tr>
<th>Phase 1: Low-Cost, Commercial-Enabled Prospecting</th>
<th>Phase 2: ISRU Pilot Plant</th>
<th>Phase 3: Full-Scale Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Prospect several sites for surface resources and hazards;</td>
<td>• Develop a pilot-scale ISRU plant to extract water and produce up to 1 metric ton of propellant.</td>
<td>• NASA awards long-term contracts for Lunar ISRU production on the order of several metric tons per year.</td>
</tr>
<tr>
<td>• Identify areas of high concentrations of water-ice and other volatiles</td>
<td>• Demonstrate capabilities for ISRU resource production.</td>
<td>• Awards are also made for delivery services to Cis-Lunar Depot.</td>
</tr>
<tr>
<td>• Assess potential sites for hazards and accessibility</td>
<td>• Demonstrate lunar transportation of large payloads from surface to cis-lunar propellant depot.</td>
<td>• Full-scale ISRU facility development of approx 200 mt of propellant per year.</td>
</tr>
<tr>
<td>• Develop and demonstrate key capabilities in partnership with industry.</td>
<td>• Evaluate feasibility and economics of scaling up production to full scale.</td>
<td>• ISRU development and production facility cost has been estimated at $40B ($4B/year over 10 years).</td>
</tr>
</tbody>
</table>
 - Lunar Landers and Rovers | | |
 - Resource Prospecting Techniques | | |
 - Lunar Mining and ISRU | | |
 - Lunar Communication Satellites | | |
 - Power Stations | | |
Potential Mission Objectives

Low-cost commercial missions may be able to meet several exploration, science and commercial objectives with small instruments and commercial products. Sample list of mission objectives are as follows:

- Prospect for, characterize and locate potential resources on the Moon (e.g. ice concentrations at the poles and precious metals at the equator);
- Measure distributions and depths of areas with high hydrogen concentrations;
- Measure amounts of radiation at various sites, within lunar caves and/or lava tubes;
- Demonstrate ISRU technologies and operations, such as drilling, for extracting lunar resources.
- Precise delivery and remote operation of commercial products from the lunar surface.
North Pole landing site options driven by following challenges:

- Hydrogen concentrations shown by map of LPNS Epithermal Neutrons
- Direct-To-Earth Communications
- Sun Illumination
- Slopes/rough terrain

Note: Black areas have less than 5 days of Net Sun and DTE access
1. **Employ the proven COTS model**
 - Enables economical and sustainable missions
 - Establish “cost and risk-sharing” partnerships

2. **Use available low-cost secondary payload opportunities**
 - On medium-class launch vehicles, e.g., SpaceX’s Falcon 9 or ULA’s Atlas V

3. **Partner with commercial and international organizations**
 - To leverage existing Lunar transportation and rover capabilities
 - E.g., Google Lunar X-Prize and CATALYST teams.

4. **Explore additional partnerships to develop other key capabilities, such as:**
 - Lunar Mining, Drilling and Excavation Techniques
 - Lunar Relay Communication Satellites
 - Lunar ISRU Operations
 - Solar or Nuclear Power Stations

5. **Partner with companies interested in being the first to develop commercial products for the Moon.**
Potential Lunar Lander Options

<table>
<thead>
<tr>
<th>Lunar Lander Teams</th>
<th>Targeted First Mission and Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrobotic’s GLXP Team</td>
<td>Planned for launch in late 2017 to Lacus Mortis. Peregrine capability ranges from 35 kg to 265 kg to lunar surface.</td>
</tr>
<tr>
<td>Moon Express GLXP Team</td>
<td>Signed launch agreement with RocketLab’s Electron Launch Vehicle for 3 lunar missions from 2017 to 2020.</td>
</tr>
<tr>
<td>Masten Space Systems</td>
<td>Launch is TBD. Landers in development include Xaero, Xoie, Xombie and XEUS.</td>
</tr>
<tr>
<td>Israel’s SpaceIL GLXP Team</td>
<td>Signed launch agreement via SpaceFlight with SpaceX’s Falcon 9 for a late 2017 launch.</td>
</tr>
<tr>
<td>Germany’s Part-Time Scientists GLXP Team</td>
<td>Planned for launch in 2017 to Apollo 17 landing site (Taurus-Littrow Valley).</td>
</tr>
<tr>
<td>ULA’s XEUS, ACES derived Lander</td>
<td>Planned for launch early next decade on ULA’s Vulcan launch vehicle. Lander capability is approx 3.8 mt to lunar surface for single launch and much greater using distributed launch.</td>
</tr>
</tbody>
</table>
Potential Rover Options

<table>
<thead>
<tr>
<th>Lunar Lander Teams</th>
<th>Targeted First Mission and Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrobotic/Carnegie Mellon University GLXP Team</td>
<td>Multiple rover options including Andy rover for first mission and Polar rover with excavation and planetary cave exploration capabilities.</td>
</tr>
<tr>
<td>iSpace Technologies operates Japan’s Hakuto GLXP Team</td>
<td>Multiple rover options for resource prospecting and tethered rovers to explore polar craters and caves.</td>
</tr>
<tr>
<td>Chile’s AngelicVM GLXP Team</td>
<td>The Unity Rover plans to deliver small payloads on first and follow-on missions.</td>
</tr>
<tr>
<td>Germany’s Part-Time Scientists GLXP team partnered with Audi</td>
<td>The Audi Lunar Quattro is equipped with a 4-wheeled electrical drive chain, tiltable solar panels, rechargeable batteries and science grade HD cameras.</td>
</tr>
</tbody>
</table>
Resource Prospecting Instruments

<table>
<thead>
<tr>
<th>Instrumentation Options</th>
<th>Key Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron Spectrometer System (NSS)</td>
<td>Senses hydrogen-bearing materials (eg. Ice) in the top meter of regolith.</td>
</tr>
<tr>
<td>Near-Infrared Volatile Spectrometer System (NIRVSS)</td>
<td>Identify volatiles, including water form (e.g. ice bound) in top 20-30 cm of regolith. Also provides surface temperatures at scales of <10 m</td>
</tr>
<tr>
<td>Camera, LEDs plus NIR spectrometer</td>
<td>Provides high fidelity spectral composition at range.</td>
</tr>
<tr>
<td>Camera and LEDs only</td>
<td>Measures soil and regolith composition at 100 micron scale.</td>
</tr>
<tr>
<td>Drills</td>
<td>Captures samples from up to 1 m; provides more accurate strength measurement of subsurface.</td>
</tr>
</tbody>
</table>
Lunar Infrastructure

Lunar Communication Relay Satellites
- Enables communication that are not in direct line of sight with Earth, such as, North and South Poles and Lunar Farside.
- Provides telemetry links and payload data relay from lunar orbit and lunar surface.

Power Stations
- Several options including solar, nuclear and power beaming from solar satellites.
- Several challenges to overcome including 14-day night time periods and PSRs at poles.

Landing Zones
- To enable safe, reliable and successful landings, landing zones should include landing pads and local navigation aids.

Government can be a catalyst to lunar industrialization by setting in place the infrastructure needed for new lunar industries to flourish.
Next Steps

- Continue to investigate and **develop 3-Phase approach** for Lunar ISRU development.
 - Develop mission objectives, budgets and schedule options for each phase.
 - Define requirements, DRMs and mission reference architecture.
- Conduct 1-day **Deep Space Industrialization Workshop** at NASA Ames to determine readiness level from industry.
 - Explore areas of interest for public-private partnerships.
 - Follow-up with industry interviews.
 - In parallel with another NASA ARC workshop entitled, “Developing International Markets for Deep Space”
- Continue to develop life cycle cost and economic assessment for:
 - Pilot-scale and full-scale ISRU facility for extracting water and creating LOX/LH2 propellant;
 - Delivery to a propellant depot at a cis-lunar destination.

Lunar COTS 3-phase approach has great potential of yielding an economical and sustainable approach for reaching Mars and beyond.
Questions?