Utilization of In-situ Resources and Transported Materials for Infrastructure and Hardware Manufacturing on the Moon – Ongoing Developments by ESA Materials Scientists

Laurent Pambaguian, Advenit Makaya*, Ugo Lafont
ESA – ESTEC – Components Technology & Space Materials Division

01/11/2016
Introduction

• **Materials** are key aspects in the design of missions for exploration and the establishment of **sustainable** settlements on the Moon (or Mars)

• **Maximise** the use of Material resources available at destination
 - Substantial **savings** in payload **mass, cost** and mission **complexity**
 - **Reduce dependence** on cargo

• **In-situ Resource Utilisation** (ISRU) for building of habitat and supporting structures (e.g. landing pads, shielding walls, antenna towers...)
 - Enables establishment and expansion of settlement
 - Various technologies investigated
Introduction

• **Optimum usage, re-use and recycling** of Materials brought for the mission – in particular **functional polymers** – for the production and the recycling of hardware for maintenance of infrastructure and equipment

 ➤ Careful Material selection during mission design phases: re-usable, recyclable

 ➤ Versatile materials and processes to increase maintenance capability

 ➤ Achieve sustainable settlement: reduce Material waste

• **Additive Manufacturing** (AM) techniques are of high interest as they allow efficient material use, do not require cutting, joining tools and can be automated

 ➤ **Enabling** technologies
Introduction

This presentation gives an **overview of relevant activities** supported by and/or conducted within the European Space Research and Technology Center’s **TEC-QT division (Components Technology & Space Materials)**

For these activities, collaboration exists with the European Astronaut Centre’s Spaceship EAC’s initiative

Spaceship EAC investigates low TRL concepts at an early stage, to address different building blocks of a Human settlement – Moon Village

ESTEC’s TEC-QT supports the development of technical solutions allowing the processing Materials in a system perspective

Some commonalities exist between the two ESA establishments and frequent exchanges allow maximising cross benefits of this collaboration and minimising overlaps
In-Situ Resource Utilisation

- Abundant resource to produce construction material for infrastructure and hardware manufacturing: regolith

- Various technologies are investigated to turn regolith into building material
3D Printing of Lunar Base Building Block Using a Mg-based Binder (D-Shape process)

• ESA-funded study (General Studies Programme) 2012
• Consortium: Monolite (UK, printing technology), Alta (Italy, space industry), Scuola Superiore Sant’Anna (Italy, process control), Foster+Partners (UK, architects)

• 3D printing technology: D-Shape process: mix the lunar regolith with a MgO/ MgCl₂ binder
• Development of a regolith simulant (DNA)
• Printing experiments under vacuum
3D Printing of Lunar Base Building Block Using a Mg-based Binder (D-Shape process)

- Design of Lunar base concept
- 1.5 ton Lunar base building block demonstrator

Challenges:

- Binder
- Regolith behaviour (abrasive, charged, radiation)
- Mobility (rover)
3D Printing of Lunar Base Building Block by Solar Sintering

• ESA-funded study (General Support Technology Programme): 2015 –
• Contractor: DLR (DE)
• 3D printing technology: solar sintering using concentrated solar light
 ➫ No binder brought from Earth, use of local energy source
• Design of 3D printing equipment and process (Xe high-flux solar simulator)
3D Printing of Lunar Base Building Block by Solar Sintering

- Study of scanning strategy and effect on printed material structure
- Characterisation of regolith and sintered material
- **Challenges:**
 - Thermal stresses
 - Regolith behaviour (abrasive, charged, radiation)
 - Effect of vacuum

Sintered brick: 240x120x30 mm³
JSC-2A regolith simulant
Sintering Time: 5h30. Layer thickness ≈ 0.1 mm

145x65x40 mm³
JSC-2A regolith simulant
Limited Resources Manufacturing

- ESA-funded study (Basic Technology Research Programme): 2015 –
- Contractor: Fotec (AT)
- Mapping and trade-off of ISRU technologies for hardware manufacturing
- Programming of tool for technology trade-off using weighted criteria

Extrusion-deposition process diagram

Full map of process diagrams

Example of trade-off
Limited Resources Manufacturing

- Selection and demonstration of hardware manufacturing process:
 - Extrusion-deposition of regolith-based paste
 - Binder: concentrated phosphoric acid
 - Martian Regolith Simulant used, but process adaptable to Lunar Regolith

- Challenges: binder ratio, stickiness of paste

Early trials of extrusion of paste produced from concentrated phosphoric acid and JSC Mars-1a Martian regolith simulant. Acid:Regolith simulant ratio: left: 0.6:1; right 1:1. Process is being optimised to minimise ratio.
Usage and Recycling of Transported Materials for Hardware Manufacturing

• Use of available materials to manufacture hardware for maintenance of infrastructure and equipment

• Materials need to be recyclable:
 - To be turned into new hardware when needed ⇒ increased maintenance capability
 - To reduce waste ⇒ sustainable settlement

• Polymers:
 - Recyclable
 - Low melting point ⇒ lower energy required for melting
 - Can be functionalised (e.g. conductive) ⇒ address multiple maintenance needs
3D Printing with Engineering Thermoplastics

• Poly(ether ether ketone) - PEEK
• Thermal stability: $T_m = 343^\circ C$
• Mechanical Pties: $\sigma_{\text{tensile}} = 100$ Mpa, $E = 3.8$ Gpa
• 3D printing technique: fused filament fabrication

• Study of mechanical properties and internal structure for various build orientations:
 • 80 % of theoretical mechanical properties achieved for XY orientation
 • Thermo-chemical property consistency with raw material
 • Higher porosity and lower mechanical properties in Z direction
 • Process modification needed to improve interlayer adhesion
3D Printing with Engineering Thermoplastics

• ESA - General Support Technology Programme project:
 • Production of conductive engineering thermoplastics based of graphene technology
 ➔ Plastics as electrical conductor
 ➔ Running phase: 1st Q-2016 to 3rd Q-2016

• ESA – Networking and Partnering Initiative project:
 • Development of multifunctional engineering thermoplastics
 ➔ Running phase: 2015 to 2017
In-Orbit 3D Printing

• ESA - Basic Technology Research Programme project MELT:
• Breadboard development for in-orbit demonstration of additive layer manufacturing technologies
 ✔ Contractors: OHB/Active Space Technology/BEEVERYCREATIVE
 ✔ Zero G - Engineering thermoplastics - High aspect ratio
 ✔ Running phase: 3rd Q-2015 to 4th Q-2017

THERMOPLASTICS AND STRUCTURES
THERMOPLASTICS AND FUNCTIONAL PART
Future?

ON-THE-MOON AND ON-PLANET 3D PRINTING

MATERIALS
RECYCLING
ISRU
ROBOTISATION
UPSCALING

INCREASED MANUFACTURING CAPABILITIES REGARDING SIZE AND FUNCTIONALITY
Conclusions

• **Materials** aspects need to be part of a **system-level** view at the **early stages** of conceiving Moon missions for exploration and Human settlement
 • Selection of transported materials for re-use and recycling
 • Consideration of ISRU (required equipment, energy needs, mission location)

• **Additive Manufacturing** technologies are enabling elements for the establishment of **sustainable** Human settlements

• Various technologies for Material utilisation exist or are being developed
 ➔ **Combination** of several **technologies** for various purposes (infrastructure, hardware, large scale, small objects) should be combined in order to make full use of the available Materials to achieve the missions objectives
Acknowledgements

Jessica Grenouilleau
Derek Aranguren van Egmond
Marriana Rinaldi
Stefan Siarov
Brando Okolo
Anna Daurskikh
Gijs van der Velden
Joris Laarman
Xavier de Kestelier
Enrico Dini
Valentina Colla
Giovanni Cesaretti
Matthias Sperl
Alexandre Meurisse
Christoph Buchner
Roland Pawelke

ESA – HSO-IDR
McGill University
Univ. Tor Vergata Roma
TU Delft
INDMATEC GmbH
Active Space Technologies GmbH
MX3D
JORIS LAARMAN LAB
Foster+Partners
Monolite
Scuola Superiore Sant’Anna
Alta
DLR
Fotec
Fotec
Thank you for your attention

Questions?