LADEE Science Results and Implications for Exploration

R. C. Elphic¹, M. Horanyi², A. Colaprete¹, M. Benna³, P. R. Mahaffy³, G. T. Delory¹,⁷, S. K. Noble⁴, J. S. Halekas⁵, D. M. Hurley⁶, T. J. Stubbs³, M. Sarantos³, S. Kempf², A. Poppe⁷, J. Szalay², Z. Sternovsky², A. M. Cooke¹, D. H. Wooden¹, D. Glenar³

¹NASA Ames Research Center, Moffett Field, CA 94035 USA,
²Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder 80309 USA,
³Solar System Exploration Division, NASA’s Goddard Space Flight Center, Greenbelt, MD 20771 USA,
⁴Planetary Science Division, NASA Headquarters, Washington D.C., 20062 USA,
⁵Dept. of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 USA,
⁶Johns Hopkins University/Applied Physics Laboratory, Laurel, Md 20723 USA,
⁷Space Sciences Laboratory, UC Berkeley, Berkeley, CA 94720 USA.
The Moon’s Thin Atmosphere and Dust Shroud

Atmosphere:
The Moon’s tenuous atmosphere comes from many sources. Argon, Helium leak from Interior. H, He & Ne from Sun (solar wind).

Dust:
The Moon’s perpetual dust shroud comes from interplanetary particles bombarding the surface. Ejecta from those impacts is continually lofted.

Many other species come from the Moon’s surface: H, H₂, Al, Na, K, OH, H₂O, CO…
A Dusty Atmosphere?
LDEX Observations
LDEX: Exospheric Dust

- LDEX saw ~ 1 grain impact/min
- Impact rate of different sizes reveals power law distribution
- Increases seen at known meteoroid streams (e.g., Geminids)
- At least one unknown ‘stream’ identified.
Dust Density vs. Altitude & LT

- Dust densities clearly maximize on morning (upstream) side of Moon
- Densities greatest at low altitudes
Dust Density vs. Altitude

- Density appears to level off at lowest altitudes
- Ejecta depart from assumed power-law speed distribution with a single sharp cut-off minimum speed u_0 needs revision for speeds below about 400 m/s.
- At higher speeds the distribution follows a simple power law
- Estimated dust exosphere mass: ~ 120 kg.

Customary ejecta speed power law prediction
Search for “Levitated” Dust

- Small < 0.1 µm grains
- LDEX measures current from such grains
- Densities < 100 m⁻³
- Even at lowest LADEE altitudes, no significant signal
- Other analyses provide lower upper limits
- This still leaves the Surveyor near-surface horizon glow unexplained.

Szalay and Horanyi, GRL, 2015

McCoy 1976 (Apollo), Glenar et al. 2011
Glenar et al. 2014 (Clementine)
Feldman et al. 2014 (LAMP)
The Lunar Exosphere: He, Ne and Ar Observations
Most helium in lunar exosphere comes from solar wind (thanks Artemis!)
Loss time scale ~4.5 days
Est. interior source of He: $2 \times 10^6 \text{ cm}^{-2} \text{ s}^{-1}$

4He and 20Ne Follow Expected Barometric Distribution

- Neon confirmed!
- Follow exospheric equilibrium for noncondensable gases.
- $nT^{5/2} = \text{const.}$
- Scale height temperature follows surface temperature.
- Differences between He and Ne result from different ballistic length scales.

Benna et al., GRL, 2015
Full Diurnal 40Ar Cycle

Average argon surface abundance (l/cc)

Local time (HH)

sunrise

noon

sunset

10^3

10^4

10^5
Variability of 40Ar with Selenographic Longitude

- Persistent maximum over the western maria
- Procellarum KREEP Terrane
- Greatly enhanced in radiogenic species (incl 40K) at surface
- 40Ar escapes from liquidus, not solidus – at depth
- Additional meteoroidal impact vaporization source?

Benna et al., *GRL*, 2015
Long Term Variability of 40Ar with Time

- Initial increase in total 40Ar abundance, followed by decrease
- LACE (Apollo 17) observed similar long-term variation.
The Lunar Exosphere: Na and K
UVS: Sodium and Potassium
Colaprete et al., ESF, 2015

- Clear diurnal variations.
- Na decreases in magnetotail (no sputtering).
- Na increases abruptly after exit into solar wind.
- Both Na and K increase at Geminids
- Na long-term variation like 40Ar?
UVS: Na and K vs. Selenographic Longitude

Colaprete et al., ESF, 2015

- Na higher over maria.
- K higher over PKT.
- Subsolar longitudes for magnetotail exit also -30 to -45E
- Much more work being done on Na and K – modeling and analysis (Sarantos)
The Lunar Exosphere:
H₂O, OH and Others
Closed Source H$_2$O observations

(see talk by Benna tomorrow)

- Abundance is based on average 5 min data at the beginning of each activity
- Instrument background low
- Exospheric H$_2$O is very sporadic, short-lived
- No obvious monthly variations
- Agrees with Chang’e 3 UV telescope limits on OH ($<10^{11}$ cm$^{-2}$ column density)
Exospheric Ion Measurements Reveal Multiple Species

Halekas, et al., *GRL*, 2015

Mass 28 is ambiguous: however, based on significant carbon detection, CO\(^+\) is likely.

UVS: Post- minus Pre-Geminids

Initial comparison of Pre- and Post Geminids Dawn Limb Spectra
- Only spectra from S/C in shadow (lunar umbra), near-dawn local times.
- Dark current & instrument bias corrected, “hot pixels” removed.
- >100 spectra co-added to improve signal-to-noise ratio.
- O, OH, Ti, Fe, Al, Ca identified
Atmosphere:
The Moon’s tenuous atmosphere comes from many sources:

- H, He & Ne from Sun (solar wind)
- Argon, Helium leak from Interior
- Ejecta from interplanetary particles bombarding the surface

Dust:
The Moon’s perpetual dust shroud comes from interplanetary particles bombarding the surface.

Ejecta from those impacts is continually lofted:

- Many other species come from the Moon’s surface: H, H₂, Al, Na, K, OH, H₂O, CO...
Exploration:

- “Mostly harmless” – dust is very tenuous
- Did not/could not address “Surveyor horizon glow”
- No evidence of inimical compounds (except Hg!)
- Now have an idea of meteoroidal volatile input (e.g., sporadic H$_2$O - see talks by Benna et al, Hurley et al tomorrow)

Science:

- Molecular transport in Surface Boundary Exosphere (different species have different binding energies)
- What does leakage rate of He and 40Ar say about state of the lunar interior? (global seismic network)
Just in time for the Holidays!
For those “hard to buy-for’s”

by Richard C. Elphic (Editor), Christopher Russell (Editor)

This volume contains five articles describing the mission and its instruments. The first paper, by the project scientist Richard C. Elphic and his colleagues, describes the mission objectives, the launch vehicle, spacecraft and the mission itself. This is followed by a description of LADEE’s Neutral Mass Spectrometer by Paul Mahaffy and company. This paper describes the investigation that directly targets the lunar exosphere, which can also be explored optically in the ultraviolet. In the following article Anthony Colaprete describes LADEE’s Ultraviolet and Visible Spectrometer that operated from 230 nm to 810 nm scanning the atmosphere just above the surface. Not only is there atmosphere but there is also dust that putatively can be levitated above the surface, possibly by electric fields on the Moon’s surface. Mikhail Horanyi leads this investigation, called the Lunar Dust Experiment, aimed at understanding the purported observations of levitated dust. This experiment was also very successful, but in this case their discovery was not the electrostatic levitation of dust, but that the dust was raised by meteoroid impacts. This is not what had been expected but clearly is the explanation that best fits the data.

Special Offers and Product Promotions

Hurry! Only 7 left in stock (more on the way).
Ships from and sold by Amazon.com

Gift-wrap available.

Add to Cart

or 1-Click Checkout

Buy now with 1-Click®

Order within 26hr 24min to get it:
Tuesday, October 20
(Free Two Day Shipping)

Ship to:
Richard Elphic- MOUNTAIN VIEW

This is a gift.

Add to Wish List
Initial LADEE Publications

Diurnal Variability of ^{40}Ar

Apollo 17 -LACE data from Hodges and Hoffman, 1975
Dust Mass Production Fn

- During LADEE mission, peak is broad, centered on dawn
- But interplanetary mass flux changes with Earth-Moon orbit about sun
- Different months have different peak locations in LT.

Dust Density vs. LT

- During LADEE mission, peak is post-dawn
- Density appears to level off at lowest altitudes