Mars’ orbital frequency modulates orbital frequencies of its satellites and determines their characteristics tied to their position relative to the Roche limits (ragged Phobos and swelling Deimos) Late Mars Workshop 2018 (LPI Contrib. # 2088), 5001 pdf

G.G. Kochemasov IGEM of the Russian Academy of Sciences, 35 Staromonetny, 119017 Moscow, RF, kochem.36@mail.ru

As all cosmic bodies in Universe move in several periodic orbits of wave nature with very different orbiting frequencies they are affected by modulated waves. They appear as predicted by radio wave physics. The modulation is division and multiplication of the higher frequency by the lower one. As a result, along with main frequencies appear two side frequencies with corresponding them tectonic granules. Examples are on surfaces of Saturn, Jupiter (cloudy covers) Pluto, the Moon, Titan, Ceres, Churyumov-Gerasimenko comet core [2, 3]. Now we show the modulation effects on Phobos and Deimos.

On Phobos a series of crossing troughs and crater chains is well presented. They cover the entire satellite surface by a kind of wavy cloak – a drying apple (Fig. 1). This shrinkage of the gaining speed falling on Mars satellite is due to necessity to keep the angular momentum [4]. Thus, the body’s radius must diminish and the body shrinks and abundantly degasses (numerous craters witness this). This occurs not chaotically but in form of regular crossing in four directions waves inscribed in a drying diminishing its surface sphere. Smallest wave forms concordant with the highest orbital frequency of the satellite (1/7.65 hours) still are not visible. However, modulated side waves and corresponding them forms (troughs and “craters chains) are visible. 1/7.65 : 1/16488 (circuitmartian frequency) gives the side frequency 1/2155 and corresponding granule size 16.5 m (the scale is the Earth with the orbital frequency 1/1 year and the corresponding wave length πR/2 or the granule size πR/4). The smallest visible features (troughs and “craters”) in Fig.1 are about 15 m. Along with them also are numerous wider troughs marking earlier more distant orbits of the satellite with the lower frequencies.

Two modulated frequencies of Deimos are interesting in that the corresponding them granules are: for the smallest (0.038 m), too fine and making smooth surface and, for the large (34.6 m), hardly visible as grids under the soft damping cover of fine dust material and blocks (Fig. 2, 3, 4). These grids are better visible along brinks of the image (Fig. 2-4). Presence of mainly two sizes of fragments (dust and blocks-bifurcation of sizes) also proves an action of two distinct modulated structuring frequencies. The dust cover is mainly discarded on shrinking Phobos and grows on Deimos. The first diminishes orbit radius, the second, in contrast, keeps it or slowly increases (different tendencies of angular momenta development). Phobos diminishes the radius of its orbit eventually crossing the Roche limit for the “liquid” (actually porous dusty) cover and losing it. The squeezed folded peeled bedrock outcrops (Fig. 1). Deimos, on the contrary, far from the limit, keeps its dusty cover (Fig. 2).

References: