Alkaline hydrothermal vents as electrochemical reactors driving an autotrophic origin of life

Camprubí, E.¹ and Lane, N.¹ ¹University College London (UK) eloi.camprubi.13@ucl.ac.uk

Introduction: Hadean alkaline hydrothermal vents have been proposed as electrochemical reactors driving an autotrophic origin of life [1, 2]. Theoretical thermodynamics show that the abiotic synthesis of biomass from H_2 and CO_2 is indeed favoured under these conditions [3]. But CO_2 reduction is kinetically extremely tardy, casting doubt on the feasibility of this mechanism. Given that almost all extant life grows by hydrogenating CO_2 , this question is of central importance to the autotrophic origins hypothesis. We are examining the possibility that geochemical proton gradients across inorganic Fe(Ni)S barriers, analogous to autotrophic cells, could have driven CO_2 reduction at the origin of life in alkaline hydrothermal vents.

Here we report the successful reduction of CO₂ to formaldehyde (CH₂O) under simulated alkaline hydrothermal conditions without the aid of organic catalysts, by tapping the free energy of a pH gradient across Fe(Ni)S barriers. We confirm that CH₂O can be transformed under these conditions into biotically relevant sugars via the formose reaction, discovered by Butlerow in 1861. Acetyl phosphate can be synthesised from inorganic phosphate and thioacetic acid, and will phosphorylate organic molecules such as sugars and amino acids, making it a plausible primordial energy currency equivalent to ATP [4]. Following Mellersh & Smith [5], we show that acetyl phosphate can redirect the formose reaction towards biotically relevant sugars such as ribose at high yield. Overall, our results show that alkaline hydrothermal conditions could drive the synthesis of biologically relevant sugars such as ribose from H₂ and CO₂.

^[1] Russell, M. J., Hall, A. J., Cairns-Smith, A. G., & Braterman, P. S. (1988). *Nature*, 336(10), 117. [2] Camprubi, E., Jordan, S. F., Basiliadou, R., & Lane, N. (in press). *International Union of Biochemistry and Molecular Biology Life*. [3] Amend, J. P., & McCollom, T. M. (2009). *Chemical Evolution II: From the Origins of Life to Modern Society* (Vol. 1025, pp. 63–94). [4] Whicher, A., Camprubí, E., Herschy, B., & Lane, N. (2017). *Origins of life and evolution of biospheres*. [5] Mellersh, A. R., & Smith, P. M. (2010). *Journal of Cosmology*, 10, 3230–3242.