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All processes in extant biology are possible and fa-

cilitated by information encoded in polymers. There-

fore, the origin of informational molecules had to be a 

crucial step in the origin of life on Earth. An important 

molecule in this context is RNA and the RNA World 

has been hypothesized as a crucial step in the transition 

from chemistry to biology. However, the RNA mole-

cule is comprised of intra-molecular bonds, which are 

prone to hydrolysis, especially under the harsh condi-

tions that are thought to have been prevalent on the 

early Earth [1]. Furthermore, the formation of nucleo-

tides with extant bases, and their subsequent polymeri-

zation, have both been problematic, to say the least. 

Certain environmental niches, such as volcanic geo-

thermal pools, allow the formation of RNA-like poly-

mers, under dehydrating-rehydrating (DH-RH) condi-

tions, by potentially forming kinetic traps [2]. Howev-

er, the low pH and high temperature conditions that are 

required for such polymerization to occur also result in 

the cleavage of the N-glycosidic bond, thereby produc-

ing polymers with abasic sites [3]. In the first part of 

the present study, we set out to characterize the effect 

of prolonged cycling, under DH-RH conditions, on the 

stability of resultant molecules and also looked at how 

they might affect the product distribution. Our  obser-

vations indicate lower fitness for modern nucleobases 

under prebiotically relevant conditions. These results 

are also supported by older experiments wherein for-

mation of nucleosides with extant bases was shown to 

be difficult.  

 

Alternate bases, on the other hand, have resulted in 

nucleosides in higher yields, suggesting a viable and 

prebiotically relevant solution to the longstanding “nu-

cleoside problem” [4]. Towards this extent, we also 

recently demonstrated the synthesis of a pre-RNA 

World nucleotide using ribose 5'-monophosphate 

(rMP) and barbituric acid (BA) as the base analog, 

under dry-heating conditions [5]. This result was simul-

taneously also demonstrated by the Hud group thus 

strengthening the more recently posited pre-RNA 

World hypothesis [6]. Furthermore, polymerization of 

the resultant monomer, i.e. the BA-nucleotide, was also 

observed when we carried out DH-RH cycles at low 

pH and high temperature. The resulting RNA-like oli-

gomers were shown to have intact bases unlike the re-

actions that were carried out using canonical nucleo-

tides. Additionally,, incorporation of BA onto pre-

formed sugar-phosphate backbones was also observed 

when pre-formed rMP oligomers were subjected to 

heating with BA. Aforementioned studies provide im-

portant preliminary evidence that alternate bases could 

have indeed gotten incorporated into early polymers 

that may have predated the molecules of an RNA-

World. Importantly, these results suggest that BA could 

have been a putative precursor of modern nucleobas-

es,.Moreover, it also highlights the possibility that the 

prebiotic soup, which would have contained several 

types of heterocycles, might have facilitated simultane-

ous sampling of other potential pre-RNA World heter-

ocycles.  

 

We discuss the selective advantage that such primi-

tive informational polymers could have had under per-

tinent selection pressures. Importantly, these kinds of 

processes have implications for shaping the prebiotic 

landscape that allowed for the emergence of primitive 

informational polymers of the pre-RNA World(s), prior 

to the emergence of a putative RNA World. 
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