
HUMAN-ROBOT TEAMING STRATEGY FOR FAST TELEOPERATION OF A
LUNAR RESOURCE EXPLORATION ROVER

International Symposium on Artificial Intelligence, Robotics and Automation in Space
Virtual Conference 19–23 October 2020

L-J. Burtz​1​, F. Dubois​2​, N. Guy​3
1​Amanogi Corp., Japan, E-mail: ​louis@amanogi.space
2​Datamapab, Japan, E-mail: ​fabian@datamaplab.com

3​Astroscale Japan Inc, Japan, E-mail: ​ n.guy@astroscale.com

ABSTRACT

We leverage the Lunar South Pole resource
exploration rover simulation environment from the
NASA Space Robotics Challenge to propose a
human-robot teaming strategy for fast teleoperation.
We explore the applicability to mission scenarios by
defining the roles and sharing of responsibilities
between the human operator and the AI,
implementing an AI running onboard the (simulated)
rover, and implementing the command and data flow
between the AI and the human operator through
algorithmic explainability and a Graphical User
Interface.

1 INTRODUCTION AND MISSION
CONTEXT

This study focuses on the first few upcoming Lunar
surface exploration missions. We are concerned with
the missions launching in 2021 to 2025 that include a
mobile rover that will prove the technology and lay
the groundwork for enabling increased capability on
each subsequent mission.

1.1 Human-Robot Teaming Rationale
In this context we prioritize robustness to unknown
environments and a deployed navigation architecture
that naturally evolves from iterative development.
We make algorithmic explainability a first-class
citizen to benefit development, commissioning on the
Lunar surface, and fast identification and resolution
of off-nominal scenarios.

This approach motivates a teaming strategy between
the Artificial Intelligence onboard the rover and the
human operator on console in Mission Control. The
teaming leverages the advantages and mitigates the
drawbacks of each actor:

AI onboard the rover:
- Advantages: access to high-framerate

high-resolution data and no latency induced by
Moon/Earth communications.

- Drawbacks: limited computing resources (mainly
due to power and radiation constraints) and

difficult to prove high reliability, especially in
unknown environments.

Human operator in Mission Control:
- Advantages: human cognition and an appreciation

of the entire mission context, future goals and past
achievements. Holds accountability for mission
success and is efficient at directing anomaly
resolution teams.

- Drawbacks: prone to fatigue and some mistakes,
requires repetitive tasks to be abstracted, only
access to compressed, lower fidelity and delayed
data.

Figure 1: elementary human-robot teaming

definition diagram
We define this human-robot teaming concept as a
system whose components have the following
characteristics:
- An AI running onboard the rover that can be fully

autonomous in the majority of scenarios.
- An AI designed as a “white box” with

explainability at its core, to enable real-time
tele-monitoring by a human operator.

- An AI that is able to gracefully fallback to human
tele-operation when encountering corner cases.
This avoids compromising on AI capability and
complexity while keeping development effort
manageable.

- An operator that is trained to monitor the AI and
manually perform the tasks the AI fails at.

- An operator within a team that includes the other
rover operators, mission scientists and support
engineers in Mission Control.

1

5092.pdfi-SAIRAS2020-Papers (2020)

- A Graphical User Interface to intuitively monitor
the AI and switch from “AI Behavior” to “Human
Override.”

1.2 Enablers of Human-Robot Teaming
This teaming strategy requires assumptions that we
believe to be valid for the majority of the first Lunar
surface mobile exploration missions.

First and foremost, this concept is only possible
because of the relative proximity of the Moon to the
Earth. This concept cannot be applied to Mars rover
missions where the >6 min round trip communication
time would be prohibitive. Second, the data link
between the rover and Mission Control must be
bi-directional, continuous, and reliable: subsequently
referred to as Near Real Time (NRT) communication.
This is either available as long as the rover is near the
lander (e.g., ispace-inc Payload User Guide [14]) or
as long as there is line of sight for direct-to-Earth
communications (such as for the NASA VIPER rover
[15]). These conditions will be met in the first phase
of any mission and will most likely be met for the
majority of the mission duration in the context of the
first upcoming Lunar surface exploration missions.

A key enabler of this Near Real Time concept itself is
that the bandwidth required is low (on the order of
100kbps downlink / 1kbps uplink), as we explain in
greater detail in the section 4.1 Bandwidth Reduction.

Also critical to this concept are enablers that we will
detail further in upcoming sections:

- Algorithmic explainability
- Clear separation of responsibilities between the

human operator and the AI
- Graphical User Interfaces that are responsive,

immersive and with a low psychological load to
enable continuous long duration operation

Figure 2: Overview functional diagram: Rover,

Communications and Mission Control
1.3 Leveraging the NASA Space Robotics
Challenge
We implemented this teaming strategy in the
simulation environment of the NASA Space Robotics
Challenge Phase 2 [2].

The competition provides a Lunar South Pole virtual
environment implemented with the open-source

Gazebo9 engine and ROS framework. Simulated
four-wheeled rovers prospect for resources in the
vicinity of the lander. Rovers are all equipped with a
forward-facing stereo camera (40 cm baseline),
LiDAR (150 degree wide field of view line
scanning), tilt motor for the vision sensors, Inertial
Measurement Unit (3-axis accelerometer and gyro),
encoders on each wheel and steering arm (position
and speed), and headlights. “Scout” type rovers are
additionally equipped with a volatile sensor,
analogous to a Neutron Spectrometer.

Figure 3: 3D simulation of the lunar surface with
rover (yellow), lander (red) and probe (yellow cube)

Figure 3 shows the randomly generated Lunar terrain,
with a lander and the scout rover that it delivered to
the Lunar surface. The low-angle illumination is
representative of polar illumination conditions. Five
craters are marked as Permanently Shadowed
Regions. The environment also includes 30 locations
that are “volatile-rich” and that will trigger the
volatile sensor within a 2m range. Finally, a cube is
hidden within the environment, conceptually
representing a lost probe (similar concept to Apollo
12 astronauts visiting Surveyor 3).

Within this environment, three tasks must be
performed within 45 simulation minutes each:
- Task 1: using a scout rover, explore the

environment to report the location of the
volatile-rich regions. This task requires accurate
localization combined with an efficient exploration
strategy.

- Task 2: using two rovers (an excavator rover and a
hauler rover), navigate to volatile-rich areas to
excavate regolith and drop it into the hauler’s bin.
This task requires accurate localization and precise
coordination between two rovers.

- Task 3: using a scout rover, find a lost probe
hidden in the environment and then return to the
lander (with a specific parking pose relative to the
lander) as quickly as possible. This task requires an
efficient exploration strategy and precise object
recognition and relative pose estimation.

We leverage the NASA competition for the
simulation environment as well as the relevance of

2

5092.pdfi-SAIRAS2020-Papers (2020)

the tasks and rover concepts to upcoming missions.
Task 1 and 3 are particularly relevant to the first
prospecting missions and will therefore be the main
focus of this study. For the NASA competition itself,
as per the rules, we submitted a fully autonomous AI
with no human input. In this study, however, we
explain how we took the concept further by:
- Exposing the “thought process” of the AI (inputs,

intermediate computations, and outputs) in a
Graphical User Interface to the human operator

- Adding the capability for the human operator to
send direct commands to the rover or modify
higher level goals for the AI to follow

- Adding an interface behavior to allow the human
operator to override the AI, perform manual
actions and hand over control back to the AI

1.4 Outline
The next sections present the teaming strategy
through a design reference scenario (section 2),
specific proofs of concept (section 3) and discussion
on the path to mission implementation (section 4).

Since this human-robot teaming concept is inherently
dynamic, videos are available in a ​dedicated public
repository​ (​https://bit.ly/2SBS7Cy​).

2 DESIGN REFERENCE SCENARIO WITH
HUMAN-ROBOT TEAMING

2.1 Separation of Responsibilities and Overview of
the Design Reference Scenario
To better understand the robot-human teaming, we
present a Design Reference Scenario (based on the
Task 3 of the NASA competition). This task requires
the rover to leave the vicinity of the lander, explore
the environment to find and approach a lost probe,
precisely compute the relative distance between the
rover and the probe, then return to the lander and
precisely align with a fiducial marker on one side of
the lander (Figure 4).

Figure 5 presents the timeline of this task,
highlighting the separation of responsibilities
between the AI and the human operator as the task
progresses. In parallel, at any time that the rover is

moving, the AI behavior and human operator have
the responsibilities outlined in Figure 6.

Figure 4: Rover’s path during the four phases of the
Design Reference Scenario

2.2 Use of Behavior Trees
While Finite State Machines (FSMs) have a long
history of being used in robotics, their main
drawback is their lack of reactivity and modularity.
Behavior Trees (BTs) solve these two issues using
two-way control transfer instead of one-way control
transfer [3].

A behavior tree can be represented as a tree structure.
Leaves are either conditions or action nodes. Other
nodes of the tree are control flow nodes. A BT can
itself take the role of an action in another BT,
contributing to modularity.

Execution of the BT occurs at a fixed time interval,
where a tick signal is generated and propagated from
parent node to child node according to the control
flow rules. A node can return three execution
statuses: ​success​, ​failure​, and ​running​. Execution
finishes when the root node returns its execution
status.

The Sequence control flow node ​(​symbolized by ​->​)
executes all child nodes until one node returns ​failure
or ​running​. If all nodes succeed, it returns ​success​.
The Fallback (also called ​Selector​) control flow node
(​symbolized by ?​) executes the child nodes until one
node returns ​success or ​running​. If all nodes fail, it
returns ​failure

Figure 5: Timeline of general tasks that are either the responsibility of the human operator or the AI

3

5092.pdfi-SAIRAS2020-Papers (2020)

https://drive.google.com/drive/u/0/folders/17O6aXTdoV_Ql8CWNj0pwCW8kt35nO9Rc
https://drive.google.com/drive/u/0/folders/17O6aXTdoV_Ql8CWNj0pwCW8kt35nO9Rc
https://bit.ly/2SBS7Cy

Figure 6: Timeline of recurrent mobility tasks that are either the responsibility of the human operator or the AI
2.3 Behavior Tree Implementation of AI
We use a minimal implementation using only
Sequences and Fallback control nodes with the
possible use of state variables. This is sufficient to
generalize decision trees, finite state machines and
teleo-reactive approaches [3].

To improve reactivity, we try to use stateless
idempotent tasks (e.g., turnHeadlightsOn). However,
it is sometimes necessary to use nodes with memory
(state) to keep idempotence and prevent an action
from being executed repeatedly (e.g., “move 1 meter
forward” being retriggered at each tick, leading to a
never-ending traverse).

Figure 7: High level behavior for the Design
Reference Scenario (NASA competition round 3)

For the mission itself, we achieve a goal-oriented
design, using the fact that BTs generalize
teleo-reactive approaches. Implicit sequences make
the design a succession of goals (post conditions)
and tasks required to achieve each goal, along with
their preconditions. This is visible in this high-level
tree for the Design Reference Scenario (Fig 7) where
three phases have been identified.

In contrast with the overall behavior, which prevents
the re-execution of an achieved goal, the subtree for
Phase 1 (Fig 8) will re-execute former tasks if a
precondition is no longer true. For example, losing
sight of the probe will retrigger the search behavior.
This is an example of reactivity creating more robust
behaviors.

Figure 8: Behavior for the probe search phase
doPhase1 (simplified)

2.4 Teaming with Behavior Trees
Since BTs generalize decision trees, we can create an
auto/manual handover mechanism.

Fig. 9 shows the overall BT, where the autoMode
node refers to the fully autonomous BT for the
mission in progress (for example Fig 7). We see that
the modularity of BTs is beneficial, since the details
of the autonomous behavior can be ignored at this
level.

Figure 9: Human operator / AI behavior control

switching implementation

Two levels of handover are available. At a high level,
the manual/autonomous switch transfers mobility
control between the AI and the human operator. This
allows the operator to either send high-level goal
coordinates to the planner via goToGoal, or direct
low-level commands via waitForCommands (​go
straight​, ​turn​, ​stop​).

In both manual and automatic modes, by default a
safety check of the absence of obstacles in close
proximity to the rover (called “Auto Emergency
Stop”) is active. This low level safety check can also
be disabled by the human operator.

4

5092.pdfi-SAIRAS2020-Papers (2020)

2.5 Navigation Teaming via Factor Graphs
The navigation capability is one of the main system
design drivers for a Lunar rover. Localization and
mapping are needed to ensure safety of the rover (not
losing communication coverage and not going into
hazardous regions) and for mission objectives (report
where interesting instrument observations have been
made and follow a systematic survey strategy). The
teaming concept allows us to select a specific
navigation strategy that leverages:
- access to high-resolution/high-frame rate sensor

input onboard the rover (but this is limited by
computational power)

- access to the human cognition of the operator in
Mission Control

We propose a teaming strategy for Simultaneous
Localization and Mapping (SLAM) implemented via
a factor graph. This graph links together observations
(factors) at high semantic level (probe, lander,
landmarks sightings) completed by odometry at high
frequency. The resulting graph is then solved with
Multi-modal iSAM [7]. The factor graph contains
variables representing the pose of the rover or
landmarks at different points in time, and related to
each other by factors representing knowledge about
absolute or relative positions. For example, with
odometry, we can relate to rover poses in the graph
using the pose delta in the odometry frame.
Observations of landmarks such as the lander using
the camera also create a factor between the rover
pose and the lander at observation time.

We choose a high semantic level implementation
because of the lack of features in the Lunar
environment (both in the simulation and in difficult
illumination conditions on the Moon), to reduce the
size of the graph (lower computational cost for
solving and lower bandwidth cost for downlink) and
to make the graph more human interpretable.

We provide interfaces for the human operator to
interact with the factor graph in multiple ways:
- Annotation of observations: by tagging or image

annotations
- Removal of observations: ​by reviewing sensor

inputs at and around the time a factor has been
added. This can be used to remove erroneous or
imprecise matches.

- Addition of observations​: ​to add observations that
were missed or to add external observations (e.g.,
observation from an orbiter, or from a camera on
the lander) or new types of landmarks.

Figure 10: A factor graph after a few observations
(blue rectangular nodes) linking rover poses and

landmarks (red nodes)

Figure 11: Visualization of the point cloud from the
stereo camera (with visualization of the rover body
for context), to manually add or review landmarks

3 SHOWCASES: SPECIFIC PROOFS OF
CONCEPT

3.1 Overcoming Hazardous Terrain
Obstacle detection itself uses input from a horizontal
LiDAR line scan, which is processed into higher
level primitives: segments and circles representing
discrete obstacles (rocks, slopes, the lander, etc.). The
rover's local path planning uses the Timed Elastic
Band (TEB) algorithm [8] to compute the optimal
path toward a given goal that avoids obstacles. For
safety, the hazard avoidance settings are deliberately
conservative, and sometimes result in the rover going
around hazardous terrain (e.g., a medium slope hill)
when it would in fact have been safe to go straight
through the hazardous terrain (e.g., over the hill).

5

5092.pdfi-SAIRAS2020-Papers (2020)

The human operator can assess the situation more
completely (using more context: camera image,
previous experience, etc.) and decide that the most
efficient trajectory (including safety) to reach the
next goal is actually through the hazardous terrain.
The human operator therefore sends the more
efficient commands manually [5], before handing
over back to the AI that will resume execution within
the new context (e.g., after the hill).

Figure 12: Rover in front of a hill blocking it from
its goal (in this case the lander). Human operator

experience can determine it is safe to go over this hill

3.2 Call for Assistance
The AI has the capability to detect that it is
confronted to a new or dangerous situation. In these
cases, the behavior is set to stop the rover and switch
to human control. Once the problem is identified and
solved manually, the solution can be encoded into a
new behavior (effectively teaching the AI).

3.3 Precision and Context-aware Mobility
At the end of the Design Reference Scenario (Task 3
of the NASA challenge), the last task is to find the
fiducial marker on the lander and precisely align with
it (this task conceptually represents connecting to a
charging port or handing over samples to the lander
for processing).

The AI behavior uses as input a Marker Pose node
that matches the features of a known model of the
fiducial marker with the features in the rover’s
camera image (see Appendix 1 Technology Stack) to
determine the relative pose (position and orientation)
of the rover to the fiducial marker (Figure 13).
However, in the presence of noise in the camera
(simulated ionizing radiation effects) and difficult
illumination conditions (e.g shadow of the lander) the
AI behavior sometimes struggles to perform the
precise alignment.

In these situations, the human operator takes over
and, using the front camera as input, sends the precise

mobility commands needed for final positioning and
alignment. This concept is similar in essence to the
manual grappling of some visiting vehicles to the
International Space Station by astronauts operating
the CanadaArm (e.g SpaceX Cargo Dragon, JAXA
HTV).

Figure 13: Rover aligning with fiducial marker.

(inset right) feature descriptor matching for 3D/2D
correspondence and camera pose computation

3.4 Opportunistic Detections and Science
Regarding the probe detection task, the operator can
sometimes detect the probe (or visual cues that lead
to the probe) before the AI. In these cases, the
operator can switch to “Human Override” mode and
set a goal toward the probe. Once the automatic
detection of the probe becomes stable, the operator
can give control back to the AI. The reactiveness of
Behavior Trees to new inputs means that the AI
won’t resume at the exploration task but will resume
directly at the probe approach task.

This concept is also applied for opportunistic science
where a human operator (e.g. mission scientist)
identifies an object of interest visually or through a
combination of sensor readings (e.g from the Neutron
Spectrometer). In this case, the human operator
preempts the AI behavior and selects a new goal
toward that object of interest. The object can also be
added to the factor graph. This use case is inspired by
the opportunistic science behaviors on the Mars
rovers [13].

4 DISCUSSION: TOWARD FLIGHT
IMPLEMENTATION

We considered the relevance of the proposed
human-robot strategy to upcoming Lunar exploration
missions from the beginning of the design phase. In
this section, we highlight some of the main
considerations in the design space: bandwidth
reduction, mission profiles and mission phases.

4.1 Bandwidth Reduction
While we did not simulate communication delays,
Quality of Service and bandwidth limitation during
this study, these considerations were included in our
design approach. Specifically, the visualizations

6

5092.pdfi-SAIRAS2020-Papers (2020)

needed for our teaming strategy rely only on high
semantic level, low bandwidth telemetry. The
processes onboard the rover reduce the needed
bandwidth in two ways:

1. Traditional compression of images / LiDAR point
cloud, stereo camera point cloud.

2. Increasing levels of abstraction in the AI behavior
we implemented naturally lead to low data rate
primitives.

Regarding the first point: The only large data needed
to be downlinked in real time to support the teaming
strategy is one NRT feed from one camera. At 2 fps,
640x480 resolution, h264 hardware compression, this
requires only about 50kbps [12].

The remaining large data is stored onboard the rover
and will be downlinked during non-driving phases
(pauses for battery charging, thermal balance and
operator shift changes). While these raw datasets are
not used for the real-time teaming strategy, they are
valuable for the science and engineering output of the
mission, and for better long term planning during the
mission.

Figure 14: 3D visualization of the low-bandwidth
primitives: (top) local path (green) between rocks

(red disks) and slope (yellow segments)
(bottom) lander coordinates (blue cylinder) and
probe coordinates (blue cube) from Vision AI

The second point is more interesting: the remaining
data needed for the teaming strategy consists of
high-level, discrete algorithm outputs:
- Circle center coordinate and radius for each

obstacle of the LiDAR instead of a full line scan.
- 3D coordinates of the position of the lander, rover,

marker and probe (only when detected) taken from

the stereo point cloud instead of the full point
cloud.

- Behavior logic and states (several hundred bytes
only)

The reliance on pre-processing and an active AI
onboard the rover allows for significant bandwidth
reduction during the active phases (rover moving).
This concept is a significant enabler considering the
effort and cost for the infrastructure needed to
support Lunar communications.

4.2 Mission Profiles
The teaming strategy is relevant to several mission
profiles:
- Technology demonstration mission: exploration

around the lander
- Traverse to and between science stations (eg

NASA VIPER concept of operations)
- Science payload (e.g. GPR or Neutron

spectrometer) need to follow a specific grid pattern
for a systematic survey.

- Virtually all mission profiles that stay within
communication range of the lander (Payload User
Guides of CLPS lander providers show that
communication range can be expected to be within
250m/500m of the lander) or mission profiles that
include direct-to-Earth rover communications (e.g.
the NASA VIPER rover)

For any mission profiles, the teaming strategy is
particularly relevant:
1. At the start of the mission for efficient

commissioning activities
2. During off-nominal scenarios for performing

Failure Detection Isolation and Recovery (FDIR)

First, the start of any mission carries significant risk
and lessons learned show that the shakeout of all
systems to verify that they are functioning as
designed yielded surprises. Particularly for the first
few upcoming lunar surface exploration missions, we
expect surprises related to navigation tasks due to:
- difference between the simulated environment and

lunar analogs used for development (illumination
conditions, hazard distribution),

- difference between the planned and the actual
landing site, and

- issues in the performance of some rover
subsystems (issues in any of vision, mobility,
power, thermal or communication subsystems
could require adopting a new exploration strategy).

The teaming strategy proposed, specifically the ease
of modifying and adding behaviors online during the
first hours of the mission would prove invaluable.

Second, system engineering best practices consider
off-nominal scenarios from the design phase. The

7

5092.pdfi-SAIRAS2020-Papers (2020)

teaming strategy provides inherent explainability and
ability to monitor the inner workings of the AI
behavior. This capability creates a constant failure
detection stance and provides dedicated, well
rehearsed pathways to failure isolation and recover.
Keeping the human in the loop also makes for more
flexible reconfiguration and adaptation to degraded
performance (as long as the communication link is
available).

4.3 Conclusion
The specifics of the next few upcoming lunar surface
exploration missions motivate a human-robot
teaming strategy to achieve fast teleoperation of
rovers.

The teaming strategy is particularly well suited in the
context of exploration (uncertain, changing, complex
goals), high capability, high reliability, manageable
development effort.

The teaming strategy is a stepping stone towards fully
autonomous missions by monitoring autonomous
behavior in-situ and collecting the treasure trove of
data to properly inform the design of a fully
autonomous concept of operations for the subsequent
mission. The teaming strategy makes the most of the
human operator’s capabilities in the first stages of a
mission while a communication link is available and
prepares the rover in the best possible way for the
more ambitious beyond communication range phases.

The teaming strategy makes for efficient iterative
development which naturally evolves into the flight
implementation.

Fully manual teleoperation is too slow for short
mission durations (most concepts are less than 14
Earth days) and does not scale well to multiple rovers
and the needed mission complexity. Fully
autonomous concepts of operations risk delaying the
first mission due to the complexities of development,
testing and mission assurance.

Acknowledgement

We express our sincere gratitude to the NASA Space
Robotics Challenge team and sponsors for the
simulation environment and encouragement to
publish results that expand on the competition itself.
We thank the authors of open source software and the
ROS community that made rapid iterative
development of the concepts presented in this study
(and our submission to the NASA competition)
possible. Direct links to their code repository or
reference are in Appendix 1 Technology Stack.

References

[1] Gaines D. et al. (2016) ​Productivity Challenges
for Mars Rover Operations: A Case Study of Mars
Science Laboratory Operations. AAAI Int. Conf.
Automated Planning and Scheduling
[2] NASA Space Robotics Challenge Phase 2
www.nasa.gov/directorates/spacetech/centennial_chal
lenges/space_robotics/about.html (Last Updated:
Aug.12, 2019)
[3] Colledanchise M. and Ögren P. ​Behavior Trees in
Robotics and AI: An Introduction. ​(2017) arXiv
preprint, arXiv:1709.00084.
[4] Côté N. et al. ​Humans-Robots Sliding
Collaboration Control in Complex Environments
with Adjustable Autonomy.​ (2012) IEEE/WIC/ACM.
[5] Cognetti, M. et al. ​Perception-Aware
Human-Assisted Navigation of Mobile Robots on
Persistent Trajectories. (2020) IEEE/Robotics and
Automation Letters.
[6] Nashed, S.B. and Biswas, J. ​Human-in-the-Loop
SLAM. (2018) 32nd AAAI Conference on Artificial
Intelligence.
[7] Fourie D., et al. (2016) ​A Nonparametric Belief
Solution to the Bayes Tree​. IROS
[8] Oriol Gasquez, (2018) ​Hakuto Flight Model User
Interface. ​Personal website, while working at
ispace-inc, with permission: https://oriol.gasquez.com
[9] C. Rösmann, F. Hoffmann and T. Bertram, (2017)
Integrated online trajectory planning and
optimization in distinctive topologies. Robotics and
Autonomous Systems, Vol. 88, 2017, pp. 142–153.
[10] Uno, K., Burtz, L.-J., Hulcelle, M. & Yoshida,
K. (2018) ​Qualification of a Time-of-Flight Camera
as a Hazard Detection and Avoidance Sensor for a
Moon Exploration Microrover​. Transactions of the
Japan Society for Aeronautical and Space Sciences
[11] Moore, T., Stouch, D. (2016). ​A generalized
extended kalman filter implementation for the robot
operating system​. In Intelligent autonomous systems
13 (pp. 335-348).
[12] Walker, J. (2018) ​Flight System Architecture of
the Sorato Lunar Rover. 16th International
Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-SAIRAS), Madrid, Spain.
[13] Castano, R., et al. (2007). ​Oasis: Onboard
autonomous science investigation system for
opportunistic rover science​. ​Journal of Field
Robotics, 24(5), 379-397.
[14] ispace-inc team. ​(2020) Payload User’s Guide
v2.0,​ Available at https://ispace-inc.com/wp-content/
uploads/2020/05/ispace_PayladUserGuide_v2_20200
1.pdf, Accessed Oct. 5th, 2020.
[15] Ennico-Smith, et al. (2020). The Volatiles
Investigating Polar Exploration Rover Payload.
Lunar Planetary Institute, (2326), 2898.

8

5092.pdfi-SAIRAS2020-Papers (2020)

APPENDIX 1: TECHNOLOGY STACK

Function Data input Methodology Reference

Level 1

Hazard Detection LiDAR (front-facing 2D line scan) Merge returns into segments. Merge
short segments into circular obstacles

Based on ​obstacle_detector ROS
package

Rover Odometry Wheel and steering arm encoders + IMU
(3-axis accelerometer and gyro)

Fusion via Extended Kalman Filter Based on ​robot_localization ROS
package​ [11]

Local path planning Current position +
next local goal ~5 to 25m away +
Hazards detected

Compute intermediate poses to reach
the next goal while avoiding hazards
and optimizing for shortest
distance/time

Based on ​teb_local_planner ROS
package​ [9]

Stereo Ranging Time synchronized image pair from
front stereo camera + camera calibration

Compute disparity and point cloud with
Block-Matching algorithm

Based on ​stereo_image_proc

Object Detection Monocular camera image Compute bounding boxes for the
Lander / Marker / Probe / other Rover

Custom detector based on OpenCV
color extraction in HSV color space and
morphological operations

Level 2

Vision AI Point Cloud from Stereo processing
Bounding box from Object Detection

Matching, filtering and frame
transformations to output relative
position between object and rover

Custom heuristic for combining inputs,
rejecting noise, and providing a robust
output

Marker Pose for precise
alignment of rover with
lander

Time-synchronized image pair from the
front stereo camera
+
bounding box of marker from Object
Detector

Precisely compute the relative camera
pose (position + orientation) to the
fiducial marker on the lander

Based on OpenCV implementation of
ORB feature extraction and description,
brute force matching, and solving PnP
2D/3D correspondence with RANSAC

Level 3

Autonomous behavior
and decision making

Rover Odometry
Local path planning
Vision AI, MarkerPose
Volatile sensor
human operator input

Behavior Tree for teleo-reactive
approach
Modular re-usable and mostly stateless
behaviors
see Section 2.3

Custom behavior tree library

Navigation /
Simultaneous
Localization and
Mapping

Rover Odometry
Vision AI
human operator input

Limited number of factors but high
quality and high semantic level. Unified
framework for including disparate
factors (odom/visual ranging/human
labels/outside knowledge)

Based on Multi-modal ​RoME.jl
implementation of iSAM [7] in Julia

Infrastructure

Simulation
environment and
physics

Models and plugins by NASA SRP2 Gazebo9 engine, physics by Open
Dynamics Engine

All credit goes to the team at ​NASA
SRCP2

Middleware N/A Built from source with Python 3 ROS Melodic

Front End RVIZ​ for the 3D UI
ipywidgets​ for the interactive dashboard UI
plot_juggler​ for all time series plotting (most valuable tool for development and troubleshooting)

9

5092.pdfi-SAIRAS2020-Papers (2020)

https://github.com/tysik/obstacle_detector
https://github.com/tysik/obstacle_detector
https://github.com/cra-ros-pkg/robot_localization
https://github.com/cra-ros-pkg/robot_localization
https://github.com/rst-tu-dortmund/teb_local_planner/tree/melodic-devel/src
https://github.com/rst-tu-dortmund/teb_local_planner/tree/melodic-devel/src
http://wiki.ros.org/stereo_image_proc
https://github.com/JuliaRobotics/RoME.jl
https://ninesights.ninesigma.com/servlet/hype/IMT?userAction=Browse&documentId=d4414ecdb345e2190f661e20df641dee&templateName=
https://ninesights.ninesigma.com/servlet/hype/IMT?userAction=Browse&documentId=d4414ecdb345e2190f661e20df641dee&templateName=
http://wiki.ros.org/rviz
http://ipywidgets.readthedocs.io/
https://www.plotjuggler.io/

