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ABSTRACT 

We leverage the Lunar South Pole resource       
exploration rover simulation environment from the      
NASA Space Robotics Challenge to propose a       
human-robot teaming strategy for fast teleoperation.      
We explore the applicability to mission scenarios by        
defining the roles and sharing of responsibilities       
between the human operator and the AI,       
implementing an AI running onboard the (simulated)       
rover, and implementing the command and data flow        
between the AI and the human operator through        
algorithmic explainability and a Graphical User      
Interface. 

1 INTRODUCTION AND MISSION  
CONTEXT 

This study focuses on the first few upcoming Lunar         
surface exploration missions. We are concerned with       
the missions launching in 2021 to 2025 that include a          
mobile rover that will prove the technology and lay         
the groundwork for enabling increased capability on       
each subsequent mission.  

1.1 Human-Robot Teaming Rationale 
In this context we prioritize robustness to unknown        
environments and a deployed navigation architecture      
that naturally evolves from iterative development.      
We make algorithmic explainability a first-class      
citizen to benefit development, commissioning on the       
Lunar surface, and fast identification and resolution       
of off-nominal scenarios. 

This approach motivates a teaming strategy between       
the Artificial Intelligence onboard the rover and the        
human operator on console in Mission Control. The        
teaming leverages the advantages and mitigates the       
drawbacks of each actor:  

AI onboard the rover:  
- Advantages: access to high-framerate    

high-resolution data and no latency induced by       
Moon/Earth communications. 

- Drawbacks: limited computing resources (mainly     
due to power and radiation constraints) and       

difficult to prove high reliability, especially in       
unknown environments. 

Human operator in Mission Control:  
- Advantages: human cognition and an appreciation      

of the entire mission context, future goals and past         
achievements. Holds accountability for mission     
success and is efficient at directing anomaly       
resolution teams. 

- Drawbacks: prone to fatigue and some mistakes,       
requires repetitive tasks to be abstracted, only       
access to compressed, lower fidelity and delayed       
data.  

 
Figure 1: elementary human-robot teaming  

definition diagram 
We define this human-robot teaming concept as a        
system whose components have the following      
characteristics:  
- An AI running onboard the rover that can be fully          

autonomous in the majority of scenarios. 
- An AI designed as a “white box” with        

explainability at its core, to enable real-time       
tele-monitoring by a human operator. 

- An AI that is able to gracefully fallback to human          
tele-operation when encountering corner cases.     
This avoids compromising on AI capability and       
complexity while keeping development effort     
manageable. 

- An operator that is trained to monitor the AI and          
manually perform the tasks the AI fails at.  

- An operator within a team that includes the other         
rover operators, mission scientists and support      
engineers in Mission Control. 
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- A Graphical User Interface to intuitively monitor       
the AI and switch from “AI Behavior” to “Human         
Override.” 

1.2 Enablers of Human-Robot Teaming 
This teaming strategy requires assumptions that we       
believe to be valid for the majority of the first Lunar           
surface mobile exploration missions. 

First and foremost, this concept is only possible        
because of the relative proximity of the Moon to the          
Earth. This concept cannot be applied to Mars rover         
missions where the >6 min round trip communication        
time would be prohibitive. Second, the data link        
between the rover and Mission Control must be        
bi-directional, continuous, and reliable: subsequently     
referred to as Near Real Time (NRT) communication.        
This is either available as long as the rover is near the            
lander (e.g., ispace-inc Payload User Guide [14]) or        
as long as there is line of sight for direct-to-Earth          
communications (such as for the NASA VIPER rover        
[15]). These conditions will be met in the first phase          
of any mission and will most likely be met for the           
majority of the mission duration in the context of the          
first upcoming Lunar surface exploration missions. 

A key enabler of this Near Real Time concept itself is           
that the bandwidth required is low (on the order of          
100kbps downlink / 1kbps uplink), as we explain in         
greater detail in the section 4.1 Bandwidth Reduction. 

Also critical to this concept are enablers that we will          
detail further in upcoming sections:  

- Algorithmic explainability 
- Clear separation of responsibilities between the      

human operator and the AI 
- Graphical User Interfaces that are responsive,      

immersive and with a low psychological load to        
enable continuous long duration operation   

 
Figure 2: Overview functional diagram: Rover, 

Communications and Mission Control 
1.3 Leveraging the NASA Space Robotics      
Challenge 
We implemented this teaming strategy in the       
simulation environment of the NASA Space Robotics       
Challenge Phase 2 [2]. 

The competition provides a Lunar South Pole virtual        
environment implemented with the open-source     

Gazebo9 engine and ROS framework. Simulated      
four-wheeled rovers prospect for resources in the       
vicinity of the lander. Rovers are all equipped with a          
forward-facing stereo camera (40 cm baseline),      
LiDAR (150 degree wide field of view line        
scanning), tilt motor for the vision sensors, Inertial        
Measurement Unit (3-axis accelerometer and gyro),      
encoders on each wheel and steering arm (position        
and speed), and headlights. “Scout” type rovers are        
additionally equipped with a volatile sensor,      
analogous to a Neutron Spectrometer. 

 

Figure 3: 3D simulation of the lunar surface with 
rover (yellow), lander (red) and probe (yellow cube) 

Figure 3 shows the randomly generated Lunar terrain,        
with a lander and the scout rover that it delivered to           
the Lunar surface. The low-angle illumination is       
representative of polar illumination conditions. Five      
craters are marked as Permanently Shadowed      
Regions. The environment also includes 30 locations       
that are “volatile-rich” and that will trigger the        
volatile sensor within a 2m range. Finally, a cube is          
hidden within the environment, conceptually     
representing a lost probe (similar concept to Apollo        
12 astronauts visiting Surveyor 3). 

Within this environment, three tasks must be       
performed within 45 simulation minutes each: 
- Task 1: using a scout rover, explore the        

environment to report the location of the       
volatile-rich regions. This task requires accurate      
localization combined with an efficient exploration      
strategy.  

- Task 2: using two rovers (an excavator rover and a          
hauler rover), navigate to volatile-rich areas to       
excavate regolith and drop it into the hauler’s bin.         
This task requires accurate localization and precise       
coordination between two rovers. 

- Task 3: using a scout rover, find a lost probe          
hidden in the environment and then return to the         
lander (with a specific parking pose relative to the         
lander) as quickly as possible. This task requires an         
efficient exploration strategy and precise object      
recognition and relative pose estimation.  

We leverage the NASA competition for the       
simulation environment as well as the relevance of        
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the tasks and rover concepts to upcoming missions.        
Task 1 and 3 are particularly relevant to the first          
prospecting missions and will therefore be the main        
focus of this study. For the NASA competition itself,         
as per the rules, we submitted a fully autonomous AI          
with no human input. In this study, however, we         
explain how we took the concept further by: 
- Exposing the “thought process” of the AI (inputs,        

intermediate computations, and outputs) in a      
Graphical User Interface to the human operator 

- Adding the capability for the human operator to        
send direct commands to the rover or modify        
higher level goals for the AI to follow 

- Adding an interface behavior to allow the human        
operator to override the AI, perform manual       
actions and hand over control back to the AI 

1.4 Outline 
The next sections present the teaming strategy       
through a design reference scenario (section 2),       
specific proofs of concept (section 3) and discussion        
on the path to mission implementation (section 4). 

Since this human-robot teaming concept is inherently       
dynamic, videos are available in a ​dedicated public        
repository​ (​https://bit.ly/2SBS7Cy​). 

2 DESIGN REFERENCE SCENARIO WITH    
HUMAN-ROBOT TEAMING 

2.1 Separation of Responsibilities and Overview of       
the Design Reference Scenario 
To better understand the robot-human teaming, we       
present a Design Reference Scenario (based on the        
Task 3 of the NASA competition). This task requires         
the rover to leave the vicinity of the lander, explore          
the environment to find and approach a lost probe,         
precisely compute the relative distance between the       
rover and the probe, then return to the lander and          
precisely align with a fiducial marker on one side of          
the lander (Figure 4). 

Figure 5 presents the timeline of this task,        
highlighting the separation of responsibilities     
between the AI and the human operator as the task          
progresses. In parallel, at any time that the rover is          

moving, the AI behavior and human operator have        
the responsibilities outlined in Figure 6. 

 

Figure 4: Rover’s path during the four phases of the 
Design Reference Scenario 

2.2 Use of Behavior Trees 
While Finite State Machines (FSMs) have a long        
history of being used in robotics, their main        
drawback is their lack of reactivity and modularity.        
Behavior Trees (BTs) solve these two issues using        
two-way control transfer instead of one-way control       
transfer [3]. 

A behavior tree can be represented as a tree structure.          
Leaves are either conditions or action nodes. Other        
nodes of the tree are control flow nodes. A BT can           
itself take the role of an action in another BT,          
contributing to modularity.  

Execution of the BT occurs at a fixed time interval,          
where a tick signal is generated and propagated from         
parent node to child node according to the control         
flow rules. A node can return three execution        
statuses: ​success​, ​failure​, and ​running​. Execution      
finishes when the root node returns its execution        
status. 

The Sequence control flow node ​(​symbolized by ​->​)        
executes all child nodes until one node returns ​failure         
or ​running​. If all nodes succeed, it returns ​success​.         
The Fallback (also called ​Selector​) control flow node        
(​symbolized by ?​) executes the child nodes until one         
node returns ​success or ​running​. If all nodes fail, it          
returns ​failure 

 
Figure 5: Timeline of general tasks that are either the responsibility of the human operator or the AI 
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Figure 6: Timeline of recurrent mobility tasks that are either the responsibility of the human operator or the AI 
2.3 Behavior Tree Implementation of AI 
We use a minimal implementation using only       
Sequences and Fallback control nodes with the       
possible use of state variables. This is sufficient to         
generalize decision trees, finite state machines and       
teleo-reactive approaches [3]. 

To improve reactivity, we try to use stateless        
idempotent tasks (e.g., turnHeadlightsOn). However,     
it is sometimes necessary to use nodes with memory         
(state) to keep idempotence and prevent an action        
from being executed repeatedly (e.g., “move 1 meter        
forward” being retriggered at each tick, leading to a         
never-ending traverse). 

 

Figure 7:  High level behavior for the Design 
Reference Scenario (NASA competition round 3) 

For the mission itself, we achieve a goal-oriented        
design, using the fact that BTs generalize       
teleo-reactive approaches. Implicit sequences make     
the design a succession of goals (post conditions)        
and tasks required to achieve each goal, along with         
their preconditions. This is visible in this high-level        
tree for the Design Reference Scenario (Fig 7) where         
three phases have been identified. 

In contrast with the overall behavior, which prevents        
the re-execution of an achieved goal, the subtree for         
Phase 1 (Fig 8) will re-execute former tasks if a          
precondition is no longer true. For example, losing        
sight of the probe will retrigger the search behavior.         
This is an example of reactivity creating more robust         
behaviors. 

 

Figure 8: Behavior for the probe search phase 
doPhase1 (simplified) 

2.4 Teaming with Behavior Trees 
Since BTs generalize decision trees, we can create an         
auto/manual handover mechanism. 

Fig. 9 shows the overall BT, where the autoMode         
node refers to the fully autonomous BT for the         
mission in progress (for example Fig 7). We see that          
the modularity of BTs is beneficial, since the details         
of the autonomous behavior can be ignored at this         
level. 

 
Figure 9:  Human operator / AI behavior control 

switching implementation 

Two levels of handover are available. At a high level,          
the manual/autonomous switch transfers mobility     
control between the AI and the human operator. This         
allows the operator to either send high-level goal        
coordinates to the planner via goToGoal, or direct        
low-level commands via waitForCommands (​go     
straight​, ​turn​, ​stop​). 

In both manual and automatic modes, by default a         
safety check of the absence of obstacles in close         
proximity to the rover (called “Auto Emergency       
Stop”) is active. This low level safety check can also          
be disabled by the human operator. 
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2.5 Navigation Teaming via Factor Graphs 
The navigation capability is one of the main system         
design drivers for a Lunar rover. Localization and        
mapping are needed to ensure safety of the rover (not          
losing communication coverage and not going into       
hazardous regions) and for mission objectives (report       
where interesting instrument observations have been      
made and follow a systematic survey strategy). The        
teaming concept allows us to select a specific        
navigation strategy that leverages:  
- access to high-resolution/high-frame rate sensor     

input onboard the rover (but this is limited by         
computational power) 

- access to the human cognition of the operator in         
Mission Control 

We propose a teaming strategy for Simultaneous       
Localization and Mapping (SLAM) implemented via      
a factor graph. This graph links together observations        
(factors) at high semantic level (probe, lander,       
landmarks sightings) completed by odometry at high       
frequency. The resulting graph is then solved with        
Multi-modal iSAM [7]. The factor graph contains       
variables representing the pose of the rover or        
landmarks at different points in time, and related to         
each other by factors representing knowledge about       
absolute or relative positions. For example, with       
odometry, we can relate to rover poses in the graph          
using the pose delta in the odometry frame.        
Observations of landmarks such as the lander using        
the camera also create a factor between the rover         
pose and the lander at observation time. 

We choose a high semantic level implementation       
because of the lack of features in the Lunar         
environment (both in the simulation and in difficult        
illumination conditions on the Moon), to reduce the        
size of the graph (lower computational cost for        
solving and lower bandwidth cost for downlink) and        
to make the graph more human interpretable. 

We provide interfaces for the human operator to        
interact with the factor graph in multiple ways: 
- Annotation of observations: by tagging or image       

annotations 
- Removal of observations: ​by reviewing sensor      

inputs at and around the time a factor has been          
added. This can be used to remove erroneous or         
imprecise matches. 

- Addition of observations​: ​to add observations that       
were missed or to add external observations (e.g.,        
observation from an orbiter, or from a camera on         
the lander) or new types of landmarks. 

 

 

Figure 10: A factor graph after a few observations 
(blue rectangular nodes) linking rover poses and 

landmarks (red nodes) 

 

Figure 11: Visualization of the point cloud from the 
stereo camera (with visualization of the rover body 
for context), to manually add or review landmarks 

3 SHOWCASES: SPECIFIC PROOFS OF     
CONCEPT 

3.1 Overcoming Hazardous Terrain 
Obstacle detection itself uses input from a horizontal        
LiDAR line scan, which is processed into higher        
level primitives: segments and circles representing      
discrete obstacles (rocks, slopes, the lander, etc.). The        
rover's local path planning uses the Timed Elastic        
Band (TEB) algorithm [8] to compute the optimal        
path toward a given goal that avoids obstacles. For         
safety, the hazard avoidance settings are deliberately       
conservative, and sometimes result in the rover going        
around hazardous terrain (e.g., a medium slope hill)        
when it would in fact have been safe to go straight           
through the hazardous terrain (e.g., over the hill).  
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The human operator can assess the situation more        
completely (using more context: camera image,      
previous experience, etc.) and decide that the most        
efficient trajectory (including safety) to reach the       
next goal is actually through the hazardous terrain. 
The human operator therefore sends the more       
efficient commands manually [5], before handing      
over back to the AI that will resume execution within          
the new context (e.g., after the hill). 

 

Figure 12:  Rover in front of a hill blocking it from 
its goal (in this case the lander). Human operator 

experience can determine it is safe to go over this hill 

3.2 Call for Assistance 
The AI has the capability to detect that it is          
confronted to a new or dangerous situation. In these         
cases, the behavior is set to stop the rover and switch           
to human control. Once the problem is identified and         
solved manually, the solution can be encoded into a         
new behavior (effectively teaching the AI).  

3.3 Precision and Context-aware Mobility 
At the end of the Design Reference Scenario (Task 3          
of the NASA challenge), the last task is to find the           
fiducial marker on the lander and precisely align with         
it (this task conceptually represents connecting to a        
charging port or handing over samples to the lander         
for processing). 

The AI behavior uses as input a Marker Pose node          
that matches the features of a known model of the          
fiducial marker with the features in the rover’s        
camera image (see Appendix 1 Technology Stack) to        
determine the relative pose (position and orientation)       
of the rover to the fiducial marker (Figure 13).         
However, in the presence of noise in the camera         
(simulated ionizing radiation effects) and difficult      
illumination conditions (e.g shadow of the lander) the        
AI behavior sometimes struggles to perform the       
precise alignment.  

In these situations, the human operator takes over        
and, using the front camera as input, sends the precise          

mobility commands needed for final positioning and       
alignment. This concept is similar in essence to the         
manual grappling of some visiting vehicles to the        
International Space Station by astronauts operating      
the CanadaArm (e.g SpaceX Cargo Dragon, JAXA       
HTV). 

 
Figure 13: Rover aligning with fiducial marker.  

(inset right) feature descriptor matching for 3D/2D 
correspondence and camera pose computation 

3.4 Opportunistic Detections and Science 
Regarding the probe detection task, the operator can        
sometimes detect the probe (or visual cues that lead         
to the probe) before the AI. In these cases, the          
operator can switch to “Human Override” mode and        
set a goal toward the probe. Once the automatic         
detection of the probe becomes stable, the operator        
can give control back to the AI. The reactiveness of          
Behavior Trees to new inputs means that the AI         
won’t resume at the exploration task but will resume         
directly at the probe approach task. 

This concept is also applied for opportunistic science        
where a human operator (e.g. mission scientist)       
identifies an object of interest visually or through a         
combination of sensor readings (e.g from the Neutron        
Spectrometer). In this case, the human operator       
preempts the AI behavior and selects a new goal         
toward that object of interest. The object can also be          
added to the factor graph. This use case is inspired by           
the opportunistic science behaviors on the Mars       
rovers [13]. 

4 DISCUSSION: TOWARD FLIGHT   
IMPLEMENTATION 

We considered the relevance of the proposed       
human-robot strategy to upcoming Lunar exploration      
missions from the beginning of the design phase. In         
this section, we highlight some of the main        
considerations in the design space: bandwidth      
reduction, mission profiles and mission phases. 

4.1 Bandwidth Reduction 
While we did not simulate communication delays,       
Quality of Service and bandwidth limitation during       
this study, these considerations were included in our        
design approach. Specifically, the visualizations     
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needed for our teaming strategy rely only on high         
semantic level, low bandwidth telemetry. The      
processes onboard the rover reduce the needed       
bandwidth in two ways:  

1. Traditional compression of images / LiDAR point       
cloud, stereo camera point cloud.  

2. Increasing levels of abstraction in the AI behavior        
we implemented naturally lead to low data rate        
primitives. 

Regarding the first point: The only large data needed         
to be downlinked in real time to support the teaming          
strategy is one NRT feed from one camera. At 2 fps,           
640x480 resolution, h264 hardware compression, this      
requires only about 50kbps [12]. 

The remaining large data is stored onboard the rover         
and will be downlinked during non-driving phases       
(pauses for battery charging, thermal balance and       
operator shift changes). While these raw datasets are        
not used for the real-time teaming strategy, they are         
valuable for the science and engineering output of the         
mission, and for better long term planning during the         
mission. 

 

Figure 14: 3D visualization of the low-bandwidth 
primitives: (top) local path (green) between rocks 

(red disks) and slope (yellow segments) 
(bottom) lander coordinates (blue cylinder) and 
probe coordinates (blue cube) from Vision AI 

The second point is more interesting: the remaining        
data needed for the teaming strategy consists of        
high-level, discrete algorithm outputs: 
- Circle center coordinate and radius for each       

obstacle of the LiDAR instead of a full line scan. 
- 3D coordinates of the position of the lander, rover,         

marker and probe (only when detected) taken from        

the stereo point cloud instead of the full point         
cloud. 

- Behavior logic and states (several hundred bytes       
only) 

The reliance on pre-processing and an active AI        
onboard the rover allows for significant bandwidth       
reduction during the active phases (rover moving).       
This concept is a significant enabler considering the        
effort and cost for the infrastructure needed to        
support Lunar communications. 

4.2 Mission Profiles 
The teaming strategy is relevant to several mission        
profiles: 
- Technology demonstration mission: exploration    

around the lander 
- Traverse to and between science stations (eg       

NASA VIPER concept of operations) 
- Science payload (e.g. GPR or Neutron      

spectrometer) need to follow a specific grid pattern        
for a systematic survey. 

- Virtually all mission profiles that stay within       
communication range of the lander (Payload User       
Guides of CLPS lander providers show that       
communication range can be expected to be within        
250m/500m of the lander) or mission profiles that        
include direct-to-Earth rover communications (e.g.     
the NASA VIPER rover) 

For any mission profiles, the teaming strategy is        
particularly relevant:  
1. At the start of the mission for efficient        

commissioning activities 
2. During off-nominal scenarios for performing     

Failure Detection Isolation and Recovery (FDIR) 

First, the start of any mission carries significant risk         
and lessons learned show that the shakeout of all         
systems to verify that they are functioning as        
designed yielded surprises. Particularly for the first       
few upcoming lunar surface exploration missions, we       
expect surprises related to navigation tasks due to:  
- difference between the simulated environment and      

lunar analogs used for development (illumination      
conditions, hazard distribution), 

- difference between the planned and the actual       
landing site, and  

- issues in the performance of some rover       
subsystems (issues in any of vision, mobility,       
power, thermal or communication subsystems     
could require adopting a new exploration strategy). 

The teaming strategy proposed, specifically the ease       
of modifying and adding behaviors online during the        
first hours of the mission would prove invaluable. 

Second, system engineering best practices consider      
off-nominal scenarios from the design phase. The       
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teaming strategy provides inherent explainability and      
ability to monitor the inner workings of the AI         
behavior. This capability creates a constant failure       
detection stance and provides dedicated, well      
rehearsed pathways to failure isolation and recover.       
Keeping the human in the loop also makes for more          
flexible reconfiguration and adaptation to degraded      
performance (as long as the communication link is        
available). 

4.3 Conclusion 
The specifics of the next few upcoming lunar surface         
exploration missions motivate a human-robot     
teaming strategy to achieve fast teleoperation of       
rovers.  

The teaming strategy is particularly well suited in the         
context of exploration (uncertain, changing, complex      
goals), high capability, high reliability, manageable      
development effort.  

The teaming strategy is a stepping stone towards fully         
autonomous missions by monitoring autonomous     
behavior in-situ and collecting the treasure trove of        
data to properly inform the design of a fully         
autonomous concept of operations for the subsequent       
mission. The teaming strategy makes the most of the         
human operator’s capabilities in the first stages of a         
mission while a communication link is available and        
prepares the rover in the best possible way for the          
more ambitious beyond communication range phases.  

The teaming strategy makes for efficient iterative       
development which naturally evolves into the flight       
implementation. 

Fully manual teleoperation is too slow for short        
mission durations (most concepts are less than 14        
Earth days) and does not scale well to multiple rovers          
and the needed mission complexity. Fully      
autonomous concepts of operations risk delaying the       
first mission due to the complexities of development,        
testing and mission assurance. 
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APPENDIX 1: TECHNOLOGY STACK 

 

Function Data input Methodology Reference 

Level 1 

Hazard Detection LiDAR (front-facing 2D line scan) Merge returns into segments. Merge 
short segments into circular obstacles  

Based on ​obstacle_detector ROS 
package 

Rover Odometry Wheel and steering arm encoders + IMU 
(3-axis accelerometer and gyro) 

Fusion via Extended Kalman Filter Based on ​robot_localization ROS 
package​ [11] 

Local path planning Current position +  
next local goal ~5 to 25m away + 
Hazards detected  

Compute intermediate poses to reach 
the next goal while avoiding hazards 
and optimizing for shortest 
distance/time 

Based on ​teb_local_planner ROS 
package​ [9] 

Stereo Ranging Time synchronized image pair from 
front stereo camera + camera calibration 

Compute disparity and point cloud with 
Block-Matching algorithm  

Based on ​stereo_image_proc 

Object Detection Monocular camera image Compute bounding boxes for the 
Lander / Marker / Probe / other Rover 

Custom detector based on OpenCV 
color extraction in HSV color space and 
morphological operations 

Level 2 

Vision AI Point Cloud from Stereo processing 
Bounding box from Object Detection 

Matching,  filtering and frame 
transformations to output relative 
position between object and rover 

Custom heuristic for combining inputs, 
rejecting noise, and providing a robust 
output 

Marker Pose for precise 
alignment of rover with 
lander 

Time-synchronized image pair from the 
front stereo camera 
+  
bounding box of marker from Object 
Detector 

Precisely compute the relative camera 
pose (position + orientation) to the 
fiducial marker on the lander 

Based on OpenCV implementation of 
ORB feature extraction and description, 
brute force matching, and solving PnP 
2D/3D correspondence with RANSAC 

Level 3 

Autonomous behavior 
and decision making 

Rover Odometry 
Local path planning 
Vision AI, MarkerPose 
Volatile sensor 
human operator input 

Behavior Tree for teleo-reactive 
approach 
Modular re-usable and mostly stateless 
behaviors 
see Section 2.3 

Custom behavior tree library 

Navigation / 
Simultaneous 
Localization and 
Mapping 

Rover Odometry  
Vision AI 
human operator input 

Limited number of factors but high 
quality and high semantic level. Unified 
framework for including disparate 
factors (odom/visual ranging/human 
labels/outside knowledge) 

Based on Multi-modal ​RoME.jl 
implementation of iSAM [7] in Julia 

Infrastructure 

Simulation 
environment and 
physics 

Models and plugins by NASA SRP2  Gazebo9 engine, physics by Open 
Dynamics Engine  

All credit goes to the team at ​NASA 
SRCP2 

Middleware N/A Built from source with Python 3 ROS Melodic 

Front End RVIZ​ for the 3D UI 
ipywidgets​ for the interactive dashboard UI 
plot_juggler​ for all time series plotting (most valuable tool for development and troubleshooting) 
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https://github.com/tysik/obstacle_detector
https://github.com/tysik/obstacle_detector
https://github.com/cra-ros-pkg/robot_localization
https://github.com/cra-ros-pkg/robot_localization
https://github.com/rst-tu-dortmund/teb_local_planner/tree/melodic-devel/src
https://github.com/rst-tu-dortmund/teb_local_planner/tree/melodic-devel/src
http://wiki.ros.org/stereo_image_proc
https://github.com/JuliaRobotics/RoME.jl
https://ninesights.ninesigma.com/servlet/hype/IMT?userAction=Browse&documentId=d4414ecdb345e2190f661e20df641dee&templateName=
https://ninesights.ninesigma.com/servlet/hype/IMT?userAction=Browse&documentId=d4414ecdb345e2190f661e20df641dee&templateName=
http://wiki.ros.org/rviz
http://ipywidgets.readthedocs.io/
https://www.plotjuggler.io/

