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ABSTRACT 

This research is developed within the ADE (Autono-

mous DEcision making in Very Long Traverses) pro-

ject funded by the European Union to develop novel 

technologies for future space robotics missions. 

ADE’s objective is to increase the range of traveled 

distance of a planetary exploration rover up to 1 

km/sol, while ensuring at the same time optimal scien-

tific data return. In this context, the ability to sense and 

classify the type of traversed surface plays a critical 

role.  The paper presents a terrain classifier that is 

based on the measurements of motion states and wheel 

forces and torques to predict characteristics relevant 

for locomotion using machine and deep learning algo-

rithms. 

The proposed approach is tested and demonstrated in 

the field using the SherpaTT rover, that uses an active 

suspension system to adapt to terrain unevenness. 

1 INTRODUCTION 

ADE [1] is an ongoing European H2020 research pro-

ject, part of the PERASPERA second call [2]. Its am-

bition is to design, develop, and test in a representative 

Earth analogue a fully autonomous rover system. The 

ADE system is capable to take all decisions to pursue 

mission objectives, to increase data collection and 

overall science, to perform autonomous long traverse 

surface exploration, to guarantee fast reaction and 

adapt to unforeseen situations, increasing mission re-

liability, and guaranteeing optimal exploitation of re-

sources. The description of the full ADE system is 

given in a companion ISAIRAS paper [3] to which the 

interested reader is invited to refer.  

This paper details one of the key technologies to ena-

ble long range applications of planetary rovers related 

with terrain awareness. As a matter of fact, the mobil-

ity range capability of the rovers has been up to date 

strongly limited to few tens of meters per day [4], [5], 

[6]. From a purely technical point of view, this limita-

tion is mostly due to the rover locomotion system and 

its power storage capabilities from one side, and the 

other by the lack/reduced skills in terms of autono-

mous capability to take decision on-board. The result 

is the impossibility to cover reasonable portions of/or 

multiples geographical areas of a potential planetary 

surface, reducing drastically the data returns both in 

terms of “pure science” and/or potential data collec-

tion for in-situ resources analysis and further exploita-

tion. The importance of sensing hazards was high-

lighted in April 2005, when the Mars Exploration 

Rover Opportunity became embedded in a dune of 

loosely packed drift material [7]. The terrain geometry 

was not hazardous; however, the high compressibility 

of the loose drift material caused the wheels to sink 

deeply into the surface, and the combination of the 

drift’s low internal friction and the motion resistance 

due to sinkage prevented the rover from producing 

sufficient thrust to travel up the slope. Opportunity’s 

progress was delayed for more than a month while en-

gineers worked to extricate it. A similar embedding 

event experienced by the Spirit rover in 2010 led to the 

end of its mobility operations [8].  

Therefore, ADE’s main objective is to design, develop 

and test key technologies suitable to overcome these 

limitations, performing long traverses while guaran-

teeing fast reaction, mission reliability and safety, and 

optimal exploitation of the robot’s resources within 

reasonable costs. The envisaged idea presented in this 

paper is that terrain properties can be obtained by the 

rover’s wheels that serve as tactile sensors. Sher-

paTT’s wheels are outfitted with six axis load cells that 

provide a direct measurement of the forces and torques 

applied by the wheels to the ground and vice versa. In 

addition, estimation of the motion states in terms of 

accelerations and rate-of-turn can be gathered by an 

inertial measurement unit attached to the robot’s body. 

All 20 joints of the suspension system provide telem-

etry including currents, voltages, PWM, temperatures, 

velocity, and position. Following this rationale, signals 

that are directly modulated by the terrain interaction 

can be obtained. These measurements represent a rich 

source of information that bring significant content in 

terms of terrain properties. The work presented in this 

paper applies learning approaches to this data in order 
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to make intelligent autonomous robots adaptive to the 

site-specific environment [9], [10]. 

 

Figure 1: SherpaTT in soft sand dunes during Morocco 

field trials in 2018. 

2 MATERIALS AND METHODS 

The ground properties detection (GPD) system is 

tested and developed using the rover SherpaTT that is 

shown in Figure 1. SherpaTT was built by DFKI RIC 

for long-distance exploration applications [11], nego-

tiation of highly challenging terrains or non-nominal 

conditions (sinkage in soft soil, getting entangled be-

tween rocks or alike), cooperation tasks between het-

erogeneous rovers in a collaborative sample return 

mission, search and rescue and/or security missions. 

SherpaTT is a four-wheeled mobile robot [12] outfit-

ted with an actively articulated suspension system, in-

dependent drive and steer wheel motors and a six de-

grees of freedom (DOF) manipulation arm. Hence, the 

rover is a hybrid wheeled-leg rover, meaning it can 

take advantage of both, wheeled and legged locomo-

tion according to the terrain difficulty. SherpaTT has 

a mass of about 180 kg and a payload capacity of at 

least 40 kg. Each of the four suspended legs has five 

DOF that include the rotation of the whole leg about 

the shoulder or pan axis with respect to the robot body, 

the two rotations of the inner and outer leg parallelo-

grams for lifting a wheel, and the steer and drive angle 

of the wheel. 

Each of the 20 suspension and six arm joints de-

livers telemetry data at a rate of 100 Hz. The telemetry 

includes joint position (absolute and incremental), 

speed, current, PWM duty cycle and two temperatures 

(housing and motor windings). Additionally, a 6-DOF 

force-torque sensor (FTS) is placed at the mounting 

flange of each wheel-drive actuator enabling the direct 

measurement of the generalized forces that each wheel 

exchanges with the supporting surface. Active force 

control for the wheel-ground contact as well as the 

roll-pitch adaption are two processes of the so-called 

Ground Adaption Process (GAP) in SherpaTT. 

 

2.1 Data Set Generation 

SherpaTT was remotely controlled to follow an ap-

proximately 10 m long straight path over three types 

of terrain: (i) unprepared sandy terrain, (ii) compact 

sand/gravel road, and (iii) paved ground. Sand and 

paved ground represent the two opposite extremes in a 

terrain classification scale, since sand can be regarded 

as a high deformable and low traction surface whereas 

a paved surface offers low/no deformability and high 

traction. For each terrain, five runs were repeated in 

forward drive and five tests in reverse drive. The speed 

of the rover was controlled as 0.1 m/s and 0.15 m/s. In 

Figure 2, the three different terrain types are shown 

taken during the experiments. 

 
(a) unprepared sand 

 

 
(b) compact sand/gravel road 

 

 
(c) paved ground 

Figure 2: SherpaTT during test runs 
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All runs were conducted with a fueled power generator 

mounted to SherpaTT. It can be seen as a red box at 

the back of the rover in Figure 2. 

The generator is used for the long traverse in the pro-

ject as a replacement for solar panels of a flight sys-

tem, in order to guarantee a 6-8 hour long operational 

time. Note, that the generator’s vibrations might be in-

cluded in the body’s IMU data. Reference runs on bat-

tery without vibrations from the generator were also 

conducted but are not considered yet for the results of 

this paper. 

 

2.2 Learning approaches 

Terrain classification represents a challenging task due 

to high variability in surface type and lighting condi-

tions, possible lack of structure, and no prior infor-

mation. In this context, heuristic or expert systems 

may perform poorly, whereas learning approaches 

may provide better performance [13], [14] [15], [16]. 

The general learning process includes gathering of 

data pertaining to the vehicle-terrain interaction fol-

lowed by a mapping stage of data with the correspond-

ing terrain. This functional relationship can help ad-

dressing various issues: (a) difficulty in creating a 

physics-based terrain model due to the large number 

of variables involved, (b) the mapping from proprio-

ceptive input to a mechanical terrain property is an ex-

tremely complicated function, which does not have a 

known analytical form or a physical model and one 

possible way to observe it and learn about it is via 

training examples, (c) a learning approach promotes 

adaptability of the vehicle’s behavior. 

In this research, we use a deep neural network to solve 

the classification problem of different terrain types. 

Therefore, sensory signals are fed in the form of spec-

trograms to a Convolutional Neural Network (CNN), 

showing better performance when contrasted with 

standard Support Vector Machine (SVM). 

 

3 EXPERIMENTAL RESULTS 

The deep CNN terrain classifier is validated in the 

field using real data gathered by SherpaTT operating 

on different surfaces. The motivation is double fold. 

On one hand, the discriminative power of propriocep-

tive signals (e.g., inertial and force measurements) is 

quantitively evaluated. In this respect, three different 

classifiers are built: two classifiers that are trained us-

ing each singular sensor modality, and one algorithm 

that combines both sensory data. On the other hand, 

the performance of a deep convolutional net is com-

pared with SVM. 

Raw data collected by SherpaTT with a sampling rate 

of 100 Hz during straight runs are partitioned in four 

folders, and, then, windowed in 1-second adjacent 

samples. The multimodal observation is then fed in the 

CNN classifier in the form of multichannel spectro-

gram, whereas first and second statistical moments are 

extracted for the SVM embodiment. 80% of the avail-

able windowed in each folder is used as training set, 

whereas the remaining 20% is left out as testing set.  

Comparison between the two learning approaches is 

presented in terms of confusion matrices, as shown in 

Figure 3, Figure 4 and Figure 5. Figure 3 shows that 

an IMU data-based learning approach can give around 

85% accuracy. The convolutional neural network, 

based on signals spectrograms in Figure 3(a) reaches 

88.3% accuracy. Meanwhile SVM, exploiting mean 

and standard deviation in Figure 3(b) is 4.8% less ac-

curate. Precision of models is also presented in the last 

column and sensitivity values are contained in the last 

row. Both models show consistent precision and sen-

sitivity values with lower values on paved ground and 

compact sand, which are terrains with relatively high 

adherence compared to sand. Lower sensitivity value 

is relative to SVM capability of discerning concrete 

samples from sand ones, based only on IMU signals.  

Figure 4 contains results of classification models 

based only on measurements of forces and torques ex-

changed between the rear left wheel and the ground. 

Both SVM and CNN models trained on signals pro-

vided by a single load-cell are quite as much accurate 

as the corresponding IMU-based ones. CNN performs 

0.6% better while SVM is 2.3% less accurate. Varia-

tion of accuracy can be explained comparing the four 

confusion matrices and considering the increasing 

compact sand samples misclassified as sand ones, as 

showed by both CNN Figure 4(a) and SVM Figure 

4(b). Refer to row Sand and column Compact Sand 

(red element S-CS). This variation is balanced in Fig-

ure 4(a) by CNN model with the increasing correctly 

classified paved samples (green element C-C) previ-

ously mistaken in Figure 3(a) as compact sand (CS-

C). SVM instead presents in Figure 3(b) a larger num-

ber of misclassified paved samples as Compact Sand 

(CS-C), thus explaining the reduction in accuracy. 

Relevant is also the comparison between (a) and (b) of 

Figure 4. 
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(a) 

 
(b) 

Figure 3: Confusion matrices obtained from the CNN 

(a) and SVM (b) terrain classifier trained with IMU 

data 

The two confusion matrixes not only present about the 

same number of correctly classified Compact Sand 

samples (CS-CS), but also the same Sand sensitivity: 

97.7%. Correspondence between Sand sensitivities of 

models indicates that the two are equally good at rec-

ognizing sand when driving on it. Moreover, corre-

spondence of elements S-C and C-S of both (a) and (b) 

indicates that the two models are equally good at dis-

cerning Sand from Paved ground because they mis-

took the exact same number of paved ground samples 

for Sand and vice versa.  

 

 
(a) 

 
(b) 

Figure 4: Confusion matrices obtained from the CNN 

(a) and SVM (b) terrain classifier trained with load-

cell data. 

Therefore, providing a wheel with a load-cell will give 

the rover about the same capacity of discerning be-

tween two opposite terrains in terms of traction as 

Sand and Concrete when using a model that relies only 

on force and torque data. 

Figure 5 underlines the importance for a model to be 

able of fusing the information provided by different 

sensors. 
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(a) 

 
(b) 

Figure 5: Confusion matrixes obtained from the CNN 

(a) and SVM (b) terrain classifier trained combining 

inertial and force signals. 

 

In this respect, the CNN model shows higher capabil-

ity of fusing IMU and load-cell data to recognize ter-

rain than SVM, reaching 91.4% of accuracy Figure 

5(a) outperforming SVM of 6.1% Figure 5(b). Using 

both IMU and load-cell data still results in higher 

SVM accuracy than using just one of the two sensors, 

but SVM does not gain from sensor fusion as much as 

CNN does. In fact, providing the IMU-based SVM 

with load-cell data results in a 1.3% more accurate 

model, whereas providing the load-cell based CNN 

with the IMU data produces a 2.5% more accurate neu-

ral network. 

In order to summarize the results, Table 1 collects the 

performance metrics of the three classifiers analyzed. 

 

Classifier 

type 

        Accuracy (%) 

SVM             CNN 

Improve-

ment (%) 

IMU-

based 

83.5 88.3 5.7 

Load cell-

based 

81.2 88.9 9.5 

Combined 85.3 91.4 10.5 

Table 1: Performance metrics obtained from the pro-

posed terrain classifiers 

 

Each single sensor modality appears to perform 

equally well. Inertial and force signals are comparable 

in terms of discriminative power for terrain classifica-

tion (first and second rows).  However, when com-

bined they provide better classification performance 

(third row). As for the learning algorithm, CNN out-

performs SVM for both the single-sensor modality and 

the combined implementation (compare the first and 

second columns). In the latter case, an improvement of 

more than 10% is found, as shown in the third column 

of Table 1. 
 

4 CONCLUSIONS 

The ADE project is designed and developed having a 

set of objectives in mind. Its main objective is to ad-

dress the current challenges that planetary rover explo-

ration has. ADE is a complex system-of-systems, in 

which each component is designed to fulfill a specific 

purpose for reaching the project’s objectives. 

Among the main capabilities provided by ADE is to 

enable long traverses. To this aim, terrain classifica-

tion results in a critical component.  

Data provided during straight forward run by Sher-

paTT’s IMU and rear left wheel cell-load are for this 

purpose gathered and analyzed. A 4-fold cross-valida-

tion process is carried on among runs and two machine 

learning algorithms (SVM and CNN) are trained over 

1 second long recordings corresponding to approxi-

mately 0.1 meters. Classification results are presented 

for the two models when based only on IMU data, only 

on load-cell data and with both sensory data. Analysis 

of corresponding confusion matrices show superiority 

of the deep-learning approach in classifying unfiltered 

data and fusing sensory information to provide a better 

estimate of the traversed terrain with respect to stand-

ard SVM-based machine learning classification. 

Soil analysis capability will be demonstrated in a Mars 

analog scenario within the next months during the 

field tests. Similar tests will be conducted for the ter-

restrial use case.  
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