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ABSTRACT 

Manual classification of large-scale orbital images of 

Mars by geologists is essential to support rover land-

ing site selection, and eventually, operations. Exten-

sive classification is, however, often prohibitive giv-

en the scale of the data and limited availability of 

specialist experts. To address this challenge, we de-

veloped a Deep Learning based system called NO-

AH-H (Novelty or Anomaly Hunter - HiRISE) to 

automate this process. NOAH-H can provide pixel 

level, annotated classifications of terrain seen in 

HiRISE images, based on a 14 class ontology defined 

by experts in geomorphology. The system prototype 

was developed and evaluated during the recent Exo-

Mars site selection process with encouraging results. 

This paper reports on the NOAH-H study findings.  

1 INTRODUCTION 

Successful rover traversability on Mars and mission 

viability is highly dependent on the underlying terrain 

type and texture of the target site. Outcrops, rugged 

bedrock, and dunes can all cause difficulties for rover 

navigation. Terrain classification with traversabilty in 

mind is an essential part of landing site selection and 

rover operations during long term route planning. 

This task requires specialist geological expertise to 

provide the core inputs, but when many sites are be-

ing considered and the area under evaluation is large, 

it is not always possible to provide exhaustive site 

analysis in the time available.  

To address this challenge in the European mission 

context the authors conducted an investigation into 

using state of the art Deep Learning (DL) methods to 

provide automated classification of the Orbital imag-

es – specifically HiRISE [1] provided by NASA’s 

MRO spacecraft. This investigation was carried out 

during ESA’s ExoMars [2] landing site selection and 

analysis process thus providing a real application 

scenario. Results from the system were considered 

during the site analysis.  

To carry out the investigation we extended previous 

work in the application of data driven, Deep Learning 

(DL) techniques for Mars terrain classification [3]. 

Specifically, we used a particular type of DL called 

Semantic Segmentation. Whilst re-using some of the 

toolsets developed previously, we also created an 

entirely new training and inference system to imple-

ment the required system. This new development was 

called NOAH-H.  

The study consisted of three main stages namely, 

Ontology definition and labelling; Algorithmic eval-

uation and training; and Final system evaluation. 

Each of these stages is discussed in the sections that 

follow: 

2 ONTOLOGY DEVELOPMENT AND LA-

BELLING 

The 25 cm/pixel HiRISE images cover areas which 

are 6 km wide and have a programmable distance of 

up to 60 km long. Terrain classification was based on 

a custom ontology which was defined specifically for 

this work. It focused on the final two candidate land-

ing sites for ExoMars namely Oxia Planum and 

Mawrth Vallis. 

 

Figure 1:  Oxia Planum, one of the two final Exo-

Mars candidate landing sites (before final selection) 

showing landing ellipse profiles and HiRISE image 

coverage. 
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We defined a classification scheme to characterize all 

terrain types found within the study areas. Three 

broad class types with two additional sub-levels de-

fined the hierarchical structure of the ontology.  

The first level of the classification scheme consisted 

of three broad, interpretive groups; Surfaces (divided 

into “bedrock” and “non-bedrock” material), Aeolian 

bedforms or “Ripples” (divided into small and large 

features), and Other (which ultimately only included 

boulder fields). We kept the interpretive elements of 

the scheme as basic as possible, so as to reduce the 

subjectivity inherent in classifying the training da-

taset. These groups were then subdivided into 14 

ontological classes.  

These classes were purely descriptive in nature, cov-

ering morphological characteristics of surface rough-

ness and ripple morphology. They were defined pure-

ly using textural characteristics, avoiding definitions 

which relied upon interpreting the perceived geologi-

cal origin of the material.  

It was felt that the use of strict geomorphological unit 

labels would be impossible to implement during the 

labeling procedure, when contextual and situational 

information would be limited. Since the model would 

ultimately perform semantic segmentation based 

solely upon the morphological characteristics visible 

in the image, we ensured that our definitions con-

formed to that methodology from the start. This ap-

proach also allowed the classes to be tailored to rover 

traversability assessment, the primary purpose for 

which the model was to be used.  

Distinct classes, which could be labeled with high 

confidence, were chosen. The classification scheme 

was designed to be as comprehensive as possible, so 

that every terrain type which the machine learning 

system was likely to encounter within these study 

areas was defined. The classification scheme of [4] 

was used as a starting point, and then adapted to the 

terrains of the candidate landing sites. These 14 clas-

ses represented the textural variations which would 

be most significant for traversability analysis. More 

detail on how the classification scheme was devel-

oped and the formal definitions of the different clas-

ses will be presented in [5]. 

Surfaces 

Non-bedrock 

1. Smooth, Featureless 

2. Smooth, Lineated 

3. Textured “Non-Bedrock” 

Bedrock 

4. Smooth "Bedrock" 

5. Textured "Bedrock" 

6. Rugged "Bedrock" 

7. Fractured "Bedrock" 

Ripples 

Large Ripples 

8. Simple form large ripples, Continuous 

9. Simple form large ripples, Isolated 

10. Rectilinear form large ripples 

Small Ripples 

11. Continuous small ripples 

12. Non-continuous small ripples, Bedrock substrate 

13. Non-continuous small ripples, Non-Bedrock sub-

strate 

Other 

14. Boulder fields 

 

Figure 2: Example framelet. Fractured bedrock near 

large isolated ripples over smooth non-bedrock ter-

rain. The yellow square is 128 m across, the size of a 

training framelet.  

The seven surface classes define the general textures 

found at the site, and form a continuum of surface 

roughness. Terrains interpreted as “non-bedrock” 

have smoother overall roughness, with little surface 

relief. They are thus most likely to consist of uncon-

solidated material. Terrains interpreted as bedrock are 

in general rougher than the non-bedrock classes. 

They exhibit greater relief and sharper morphology.   

Ripple classes comprise different morphologies of 

aeolian cover. Size is defined based upon the width 

of the ripple perpendicular to the ridge crest. Small 

features have a width of < 5m, while large features 

are > 5m wide. Other parameters, such as the spatial 

density of the ripples (whether they are continuous, 

discontinuous, or isolated), and whether or not they 

conform to a “simple sinuous” morphology are also 

considered. Not every combination of these descrip-

tive parameters was included in the classification 

system, since not all of them occur at the site. Boul-
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der fields, where discrete blocks, distinct from the 

underlying substrate are observed form the final 

class.  

To provide training data for the system, the science 

team extracted image framelets from the full HiRISE 

images and used our Dataset Annotation Tool (DAT) 

[3], [6] to label examples of each class type. These 

consisted of small squares (128 m by 128 m; 512 

pixels by 512 pixels). Framelets were selected to pro-

vide a suite of representative examples, from across 

the study areas. Each framelet contained multiple 

terrain types and every attempt was made to feature 

every observed combination of ontologies.  

The DAT allowed for pixel level labeling according 

to the terrain types in each framelet. Areas which 

definitively represented each ontological class were 

digitized using the DAT, producing pixel-class pairs 

which could be used to train the model. Previous 

work on the NOAH system [3], where the DAT was 

first proposed,  had relied on Citizen Science to com-

plete the labeling. However, for this project it was 

decided that a large degree of expertise was required 

to accurately label the subtly different ontologies. 

The labeling work was thus conducted exclusively by 

the science team.  

The main technical component of the labeling phase 

consisted of developing the DAT to allow the manual 

annotation and labeling of HiRISE images. The DAT 

was designed on top of the Oxford University Zo-

oniverse platform [7]. This provided a lot of built-in 

functionality. However, certain features needed to be 

extended in order to better support the science team, 

and provide the highest quality annotation data possi-

ble. This included adding a contextual zoomed out 

version of the image, and providing HiRISE metadata 

such as image number and coordinates in latitude and 

longitude. The figures below show a typical example 

of DAT usage in the NOAH-H case with several ter-

rain types being labeled in one Region of Interest 

(ROI). 

 

Figure 3: Example of DAT usage. (HiRISE image: 

ESP_046525_2030 NASA/JPL/UoA) 

In total, two labeling campaigns were conducted with 

the second being informed by results from the first. 

The rationale for this is discussed further in 3.2. The 

labelling activity provided approximately 5,700 indi-

vidual class instances across 295 MP in the final set. 

Approximately 66% of the available framelet pixels 

were labelled.  

 

Figure 4: Map of Mawrth Vallis, showing distribu-

tion of framelets and HiRISE images after [5]. ([8] 

NASA/JPL/UoA) over the MOLA global topographic 

map [9] 

 

3 ALGORIHTMIC APPROACH 

In this work we have cast the required classification 

challenge as a semantic segmentation problem, al-

lowing a system to automatically provide annotated, 

pixel level terrain maps, which can then be interpret-

ed by human experts to support traversability analy-

sis. We were not seeking to replace the human ex-

perts but augment their work, by rapidly supplying, 

full coverage, terrain level classifications, to inform 

their overall assessments. The models produce a pre-

dicted classification for every pixel in every HiRISE 

image under consideration, which was previously 

unobtainable given the limited resources available. 

This has the potential to greatly extend the experts’ 

field of view and the coverage of further analysis in a 

time efficient way.  

Given the fragmented nature of terrain distributions 

in the sites of interest, this was best served by provid-

ing the dense classification outputs rather than regu-

lar, larger scale geometric predictions e.g. using a 

bounding box assignment and object detection-based 

techniques. In this use case the instance assignment 

for contiguous terrain type groupings was considered 

to be part of the higher-level human assessment of 
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the scene where relevant. Boundary assignment is 

often subjective and challenging even for human ex-

perts in this type of application and often relies on 

much wider context.  

3.1 Deep Neural Network (DNN) Methodology 

Classifying whole or elements of an image has been 

an ongoing challenge for the computer vision com-

munity for many years. This past decade has seen 

significant advances being made through new devel-

opments in a specific type of learning and Neural 

Network based classification known as Deep Learn-

ing. Deep Neural Networks have been shown to out-

perform traditional or shallow neural networks and 

even human predictions in some image classification 

challenges [10].   

Initially, developments and applications of DNN’s 

have focused on image classification, object localiza-

tion, and detection. As the decade has progressed, a 

series of progressive and iterative developments have 

built on the success of their predecessors and at the 

heart of most common architectures is a convolution-

al filter-based approach to feature extraction. So 

called Convolutional Neural Networks (CNN’s) have 

formed the backbone of many recent developments.  

This work has extended to addressing pixel level 

classification problems. The principle of semantic 

segmentation models [11–13] involves classifying 

each pixel of an image by analyzing the region 

around it, often called the receptive field, and passing 

it through a deep network to compute a class predic-

tion. 

 

 

Figure 5:  Fully Convolutional Neural Network Ar-

chitectures for dense predictions [14]. 

 

A common state-of-the-art semantic segmentation 

approach has been described in [14] where the au-

thors designed an approach to generate segmentation 

maps for images of any size by using a CNN archi-

tecture for dense predictions without any fully con-

nected layers. However, some Deep Learning archi-

tectures offer a different approach to semantic seg-

mentation by learning multi-scale contextual features. 

One such example is the model designed by Google: 

DeepLab [15–17]. Instead of regular convolutions, 

DeepLab uses Atrous Convolutions, also referred to 

as dilated convolutions, which can expand the filter’s 

field of view.  

These specialized convolutions effectively increase 

the receptive field of the filters without increasing the 

filter size. This allowed us to give more context to the 

network to classify each pixel while retaining the 

spatial relationships, which is desirable. It offered an 

efficient mechanism to control the field-of-view and 

found the best trade-off between accurate localization 

(small field-of-view) and wider range context with 

more semantic information (large field-of-view). In 

the course of this work we evaluated a range of archi-

tectures which realized the multiscale approach to 

feature extraction, incorporating bespoke modifica-

tions in order to isolate the optimum approach based 

on architectures available at the time of this devel-

opment.  

3.2 Evaluation, Training & Additional Labelling 

Campaigns 

We measured the accuracy of our models based on 

standard metrics such as Precision, Recall and the 

Intersection over Union (IoU). All are computed us-

ing the class-wide confusion matrix which records 

ground truth versus prediction performance. The IoU 

metric is widely used for to evaluate and compare 

semantic segmentation models and allows us to 

measure the agreement between ground truth and 

predictions as a fraction of the total number of la-

belled pixels. The IoU for each class was measured 

using the following formula:  

IoU = TP/(TP + FP + FN)  (1)  

Where:  

• True Positive (TP): Number of pixels cor-

rectly classified. 

• False Positive (FP): Number of pixels incor-

rectly classified as belonging to a specific 

class. 

• False Negative (FN): Number of pixels in-

correctly not classified as not belonging to a 

specific class. 
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In addition to producing an IoU for each class, a 

mean IoU for the combined classes is computed to 

provide a single number performance value.    During 

the evaluation phase our preliminary test results and 

subsequent analysis revealed better than expected 

initial results with performance as measured by IoU 

in excess of 90% for some classes. Mean IoU at the 

full granular levels was over 70% and over 90% for 

the combined classes. In an attempt to improve the 

system performance we initiated a second labelling 

campaign knows as “The Second Run”. This batch 

included new data appended to the original “First 

Run” dataset ensuring an overall increase in support 

for the various classes. A third dataset known as the 

“Final Run” balanced the support for some classes by 

making small but focused modifications to the second 

run. In order to properly evaluate the system, the da-

taset was split into two sets: Training and Validation 

during every run.  

 

Statistic  First 

Run  

Sec-

ond 

Run  

Final Run  

Total Images  917  1507  1507  

Total number 

of Images for 

Training  

824 (~ 

90%)  

1414 

(~ 

94%) 

1414 (~ 

94%)  

Total number 

of Images for 

Validation  

93 (~ 

10%)  

93 (~ 

6%)  

93 (~ 6%)  

Total number 

of pixels  

240 MP  395 

MP  

395 MP  

Total number 

of labelled 

pixels  

151 MP  259 

MP  

236 MP  

Percentage 

labelled of 

each image  

~ 63.1%  ~ 

65.8%  

~ 59.7%  

 

Table 1: General dataset statistics 

Table 1 shows the total number of images for each 

set and the total number of Pixels (given in terms of 

Megapixels, MP) of all images. It notes the number 

of MP, along with an approximation of the percent-

age of each image labelled using the DAT tool. To 

evaluate the performance of the NOAH-H system as 

a broader semantic segmentation network, the onto-

logical classes were also combined into the five sec-

ond order groups from the hierarchical classification 

scheme; Bedrock, Non-Bedrock, Large Ripples, 

Small Ripples, and Boulder Patches. This allowed us 

to assess different levels of performance as in some 

cases, grouped ontologies were sufficient to support 

the traversability analysis.  

4 RESULTS 

The images selected for NOAH-H classification were 

chosen based on criteria of low-noise, full resolution 

(~25 cm/pixel), and central coverage of the landing 

ellipse. 

4.1 Output Examples 

Post-processing of the NOAH-H output included 

down-sampling to 2m/pixel and conversion to color 

classes for analysis. Each of the classes was given a 

unique combination of RGB values in-order to create 

masks with the classification.  

 

Figure 6: (a). Example Output of the “First Run” (b). 

Output of the “Final Run”. 

 

Figure 7:  Close-up illustration of NOAH-H outputs. 

This allowed the output to be displayed conveniently 

as a different color for each class in image-viewing 
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software, and then to be easily converted into a vec-

tor or single band product in a GIS to formally ma-

nipulate the data. GIS can also be used to overlay the 

NOAH-H output onto the original HiRISE images for 

inspection, which proved the most effective way for 

the science team to utilize the output raster.  

4.2 Assessment  

The core model was evaluated at various levels of 

granularity. The figures below show IoU based accu-

racy results for the various dataset runs.  

  

 

Figure 8:  Accuracy results for the full 14 classes 

  

Figure 9:  Accuracy results for summary class pre-

dictions.  

The results demonstrate a varied level of classifica-

tion performance across the 14 classes but a very 

encouraging overall performance, particularly given 

the small size of the datasets used. The system has 

performed very well when predicting classes such as 

large ripples, boulder fields, and some bedrock types. 

Aggregated performance for the meta-class types or 

groups of ontologies showed even better performance 

with an IoU of over 90% in some cases.  

The size of the datasets does have an impact on the 

conclusions we draw from the work. As noted, the 

system provided excellent results despite relatively 

low levels of data by DNN standards. Our dataset is, 

we believe, the largest of its kind (i.e. labeled plane-

tary remote sensing images) available at this time. It 

was a major achievement in itself given that it was 

carried out in parallel with the ExoMars site assess-

ment with expert time being a limited resource. How-

ever, at a statistical level its relatively modest size 

must be borne in mind when considering an extrapo-

lation of the application beyond the datasets used 

here. It is however encouraging.  

In addition to the standard IoU based assessment we 

also carried out qualitative assessments of the system 

with the science team in order to better understand 

the system performance. The analysis highlighted 

several key factors which showed the strengths of the 

system and also areas for improvement. 

The system operates best at a landscape level where 

contiguous groups are presented to the end user for 

manual evaluation and final assessment. This was in 

line with the original scope of the work and showed 

that it could provide large volumes of first order clas-

sification for expert assessment in minutes. It is not 

possible to replicate this type of dense prediction at 

scale with the limited number of experts available. 

Incidences of single pixel errors in contiguous patch-

es of terrain are a negligible issue in this context but 

if the outputs were to be immediately used by down-

stream automated processes this could cause issues. 

As noted in the introduction however this was not 

considered part of the original system scope.  

Figure 10 (a) shows an interesting example of how 

the system can augment and speed-up manual analy-

sis. In this case, there is a shadow area present in the 

crater, which would ordinarily require the use of 

post-processing tools in order to complete a human 

assessment. Figure 10(b) shows the automatic output 

from the NOAH-H system using the native HiRISE 

images which is available immediately.  

Class imbalance is a major factor and a standard issue 

for many Machine Learning based applications. Sev-

eral class types had poor support. In some cases, this 

did not reduce prediction accuracy excessively but in 

others this was clearly an issue. 
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Figure 10: (a) Original HiRISE image (b)Overlaid 

NOAH-H Output Mask 

  

 

 

 

Figure 11: Accuracy deltas for Second and Final Run 

dataset versus the original First Run. 

 

This was one of the drivers for our Second Run label-

ling campaign and re-design in the Final Run but in 

practice it was hard to manipulate the data to fully 

mitigate the under-support in some cases as the figure 

above shows.   

This was exacerbated by other factors such as intra-

class similarity and subjectivity in the original as-

sessments. The delineation is not always clear to the 

human experts, even though they have the benefit of 

wider geomorphological data and interpretation. 

Broad levels of context are a crucial element of any 

geology based assessment and clearly its role here 

has been limited to a relatively localized, spatial in-

fluence on training at the pixel level. This impact was 

most pronounced again on class boundaries and cases 

where there were interactions or class “bleed” in 

graduated cases. Of course the reduction of the in-

spection task to a 14 class ontological hierarchy is the 

result of a trade-off between expressive richness and 

labelling/training practicality so inevitably there will 

be some confusion present in the training data which 

will affect performance.  

5 CONCLUSION 

This small study investigated the use of DNN tech-

nology to support traversability analysis for ESA’s 

forthcoming ExoMars Rover mission. The initial 

results have been encouraging and the outputs from 

the system are currently being used to support the 

ongoing site investigation and analysis by the science 

team. The authors continue to collaborate on this and 

other further applications of this technology in other 

Space domains.  This shows the value of surgically 

applied AI when it is used to augment human experts 

and carry out data intensive first order classification.  
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