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ABSTRACT 

This paper addresses the problem of slip prediction for 

exploration rovers. When an exploration rover is oper-

ated on terrains of fine-grained sand, especially on 

slopes, it is important to accurately and precisely pre-

dict vehicle slippage for avoiding entrapment. How-

ever, the prediction of vehicle slippage is challenging 

especially, when predicting slip on possibly risky ter-

rains since for such terrains no or only scarce traverse 

data is usually available for prediction. To address the 

problem, this paper proposes a slip prediction method 

based on transfer learning. The proposed method uti-

lizes limited data on low risk terrain of the target envi-

ronment and boosts the prediction accuracy by lever-

aging traverse experiences on multiple types of ter-

rains.  

1 INTRODUCTION 

Several surface exploration missions using manned 

and unmanned rovers have been operated on the Moon 

and Mars thus far. Those rover missions have made 

great contributions of important scientific findings. 

The target areas of earlier missions were mainly on be-

nign terrains although some vehicles occasionally 

drove on inclined terrains. NASA’s Curiosity Mars 

rover, on the other hand, is targeting at ascending to 

the low layer of Mount Sharp. Future rover missions 

are expected to traverse challenging terrains such as 

walls of lunar craters, slopes of loose regolith.  

One of the problems in traversing such terrains is slip-

page of rovers [1, 2]. The rover slippage can become 

significant on sandy terrains, especially on slopes, in-

ducing high sinkage and making the rover entrapped 

into the sand. Therefore, it is important to detecting 

risky terrains that induce such critical slip and then to 

select safe routes for successful operations.   

However, accurate and precise prediction of the vehi-

cle slippage is highly difficult due to complicated ve-

hicle-terrain interactions. Vehicle behaviors are gener-

ally affected by many factors such as terrain geometry 

(slope and roughness), surface type (sand, cohesive 

soil, rocks, bedrock, or mixture of these), and surface 

accumulated condition (compacted or not, accumula-

tion depth, and moisture content) [3].  

Several research so far have proposed slip prediction 

algorithms [4, 5, 6]. While these methods are some-

what promising, sufficient traverse data on target en-

vironments are essentially required for an accurate 

prediction of the traversability of the terrains. If the 

rover targets at ascending steep slopes, it is required to 

take risks for obtaining traverse data of that possibly 

hazardous terrains. Usually during a mission, however, 

a rover typically avoids risky terrains for the mission 

safety. Therefore, traverse data on such terrains might 

be only scarcely or even never available. This makes 

the slip prediction of steep slopes challenging.  

This work addresses the above problem which inher-

ent in rover slip prediction. Especially, the present 

work is aiming at improving the prediction accuracy 

of the slippage on challenging terrains of new environ-

ments from in-situ traverse data on relatively safe area 

(Fig. 1). The present study proposes a slip prediction 

method based on multi-source transfer Gaussian pro-

cess regression (MSTGPR). The proposed method lev-

erages traverse experiences on multiple terrains, which 

might be obtained either on Earth or during a mission, 

and improves prediction accuracy on possibly risky 

terrains of the target mission environment where no in-

situ traverse data is available beforehand for prediction. 

Figure 1: Concept of the proposed slip prediction on 

possibly risky terrains. 
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This paper is organized as follows. First the transfer 

learning-based slip prediction method is proposed in 

Section 2. Next, the proposed method is evaluated us-

ing a synthetic slip-slope dataset in Section 3. Section 

4 summarizes this paper and mentions future works.  

 

2 PROPOSED METHOD 

This section proposes a slip prediction method based 

on transfer learning. Transfer learning [7] is a learning 

method that applies knowledges or learned models in 

one or more applications/tasks (source domains) to the 

model learning for another application/task (target do-

main). By appropriately transferring the model infor-

mation from the source domain, transfer learning can 

improve the performance in the target domain when 

the target training data is limited.  

The proposed method learns the slip prediction model 

of the new traverse environment (target domain) by 

using the slip data on benign terrains of that environ-

ment and pre-obtained slip data on multiple terrain 

types (source domains). Specifically, this study builds 

the target slip model as a weighted sum of the slip 

models for the source domains {𝑆𝑖} (𝑖 = 1, … , 𝑁) as in 

Eq. 1.  

𝑓(𝑇)(𝒙) =  ∑ 𝑤𝑖𝑓(𝑆𝑖)(𝒙)

𝑁

𝑖=1

 (1) 

Here 𝒙 represents the input feature vector of the ter-

rain geometry, such as pitch, roll, and surface rough-

ness. 𝑤𝑖  represents the weight for the 𝑖 -th source 

model. While any algorithms can be applied to learn 

the base source model 𝑓(𝑆𝑖)(𝒙) and the weight 𝑤𝑖 , this 

study utilizes multi-source transfer Gaussian process 

regression (MSTGPR) [10], a variant of Gaussian pro-

cess regression (GPR) [8] for multi-source transfer 

learning.  

This study assumes that traverse data on multiple ter-

rain types have been obtained beforehand, for example 

either by pre-flight traverse tests on the Earth or during 

earlier mission stages. This study also assumes that the 

rover can estimate its slippage from its onboard sen-

sory information.  

2.1 Gaussian Process Regression 

GPR is a nonparametric approach to lean a regression 

model which does not require to assume any specific 

forms for the model (e.g., linear, polynomial, or expo-

nential), and the model shape is determined based on 

training data. In addition to this, GP can express the 

prediction uncertainties as variances along with the 

predictive means. Because of these features, GPR is 

suitable for modeling the vehicle slippage which 

shows complicated behaviors depending on the target 

terrain geometry and surface type. The work by Cun-

ningham et al. [6] shows the effectiveness of GPR for 

modelling rover slippage. 

The GPR-based slip prediction assumes that the slip 

measurement 𝑦 is given by the following form: 

𝑦 = 𝑓(𝒙) +  𝜀 (2) 

where 𝒙 denotes the terrain geometry and 𝜀  denotes 

the observation error that follows a zero-mean Gauss-

ian distribution. 𝑓(𝒙) is the latent function that repre-

sents the rover slip behavior. 𝑓(𝒙) follows the Gauss-

ian distribution which is determined by the mean 

𝑚(𝒙) and covariance function 𝑘(𝒙, 𝒙′).  

Given the training data 𝑫 = {𝑿, 𝒚}, the joint distribu-

tion of the latent function and the measurements 𝒚 can 

be learned by tuning the hyperparameters of the model. 

In the prediction step, the predictive slip at the point 

𝒙∗  is given by 𝑓(𝒙∗)~𝑝(𝑓|𝑫) = 𝒩(𝑓|𝑚, 𝑣)  where 

the predictive mean 𝑚(𝒙∗)  and variance 𝑣(𝒙∗)  are 

given by Eqs. 3-4, respectively.  

𝑚(𝒙∗) = 𝑲(𝒙∗, 𝑿)(𝑲(𝑿, 𝑿) + 𝛽−1𝑰)−1𝒚 (3)

𝑣(𝒙∗) = 𝑲(𝒙∗, 𝒙∗)

−𝑲(𝒙∗, 𝑿)(𝑲(𝑿, 𝑿) + 𝛽−1𝑰)−1𝑲(𝑿, 𝒙∗) (4)

 

Here 𝑿 and 𝒚 denotes the n training inputs and meas-

urements, respectively. 𝑲(∙, ∙) denotes the covariance 

matrix evaluated with the pairs of the training input 

points or the prediction point 𝒙∗. 𝛽 denotes the preci-

sion against the measurement noise 𝜀, and 𝑰 denotes 

an 𝑛 × 𝑛 identity matrix. 

 

2.2 Multi-Source Transfer Gaussian Process Re-

gression 

In MSTGPR, the correlation between a source domain 

and the target domain is captured in addition to the 

correlation between data points [9, 10]. The transfer 

covariance function 𝑘∗(𝒙, 𝒙′), given Eq. 5, is intro-

duced for this purpose.  

𝑘∗(𝒙, 𝒙′) = {
𝜆𝑖𝑘(𝒙, 𝒙′) 𝒙 ∈ 𝓧(𝑆𝑖) & 𝒙′ ∈ 𝓧(𝑇) 𝑜𝑟

𝒙 ∈ 𝓧(𝑇) & 𝒙′ ∈ 𝓧(𝑆𝑖)     
𝑘(𝒙, 𝒙′) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5) 

In Eq. 5, 𝜆𝑖 ∈ [−1, 1]  denotes the similarity coeffi-

cient between the source domain 𝑆𝑖 and the target do-

main 𝑇, with a higher 𝜆𝑖 representing a higher similar-

ity.  
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Based on the transfer covariance function, the covari-

ance matrix for a single transfer GPR is defined as Eq. 

6. 

�̃�𝑆𝑖𝑇 = [
𝑲𝑆𝑖

𝜆𝑖𝑲𝑆𝑖𝑇

𝜆𝑖𝑲𝑇𝑆𝑖
𝑲𝑇

] (6) 

Here 𝑲𝑆𝑖
 and 𝑲𝑇 are the covariance matrices of the in-

dividual domain 𝑆𝑖  and 𝑇 , respectively, whereas 

𝑲𝑆𝑖𝑇 = 𝑲𝑇𝑆𝑖

𝑇  is the covariance matrix between the two 

domains.  

Given the source domain data 𝑫(𝑆𝑖) = {𝑿(𝑆𝑖), 𝒚(𝑆𝑖)} 

and the training data of the target domain 𝑫(𝑇) =
{𝑿(𝑇), 𝒚(𝑇)}, the joint distribution of the latent function 

𝑓(𝑆𝑖,𝑇)(𝒙) and the measurements 𝒚(𝑆𝑖𝑇) = {𝒚(𝑆𝑖), 𝒚(𝑇)} 

can be learned by tuning the hyperparameters in the 

covariance function and the similarity coefficient 𝜆𝑖. 

The predictive slip of the target domain is given by 

𝑓(𝑆𝑖,𝑇)(𝒙∗)~𝑝(𝑓(𝑆𝑖,𝑇)|𝑫(𝑆𝑖) , 𝑫(𝑇)) =
𝒩(𝑓(𝑆𝑖,𝑇)|𝑚(𝑆𝑖,𝑇), 𝑣(𝑆𝑖,𝑇))  with the predictive mean 

and variance represented by Eqs. 7-8, respectively.  

𝑚(𝑆𝑖,𝑇)(𝒙∗) = 𝑲∗(𝒙∗, 𝑿)(�̃�𝑆𝑖𝑇 + 𝚲)
−1

𝒚(𝑆𝑖𝑇) (7)

𝜎(𝑆𝑖,𝑇)(𝒙∗) = 𝑲(𝒙∗, 𝒙∗) + 𝛽𝑇
−1

−𝑲∗(𝒙∗, 𝑿)(�̃�𝑆𝑖𝑇 + 𝚲𝑆𝑖,𝑇)
−1

𝑲∗(𝑿, 𝒙∗)(8)

 

Here 𝚲𝑆𝑖,𝑇 = [
𝛽𝑆𝑖

−1𝑰𝑛𝑆𝑖
𝟎

𝟎 𝛽𝑇
−1𝑰𝑛𝑇

] with 𝛽𝑆𝑖
 and 𝛽𝑇  be-

ing the precisions against the measurement noise in the 

source 𝑆𝑖 and target domains, respectively.  

For appropriately combining the single TGPR models 

of multiple source domains in Eq. 1, this study deter-

mines the wight 𝑤𝑖  for the source domain 𝑆𝑖 based on 

the correlation efficient 𝜆𝑖 as follows [10]:  

𝑤𝑖 = 𝑔(𝜆𝑖). (9) 

In summary, the proposed slip prediction method de-

velops the slip model of the target domain based on Eq. 

1 by learning the similarity coefficient 𝜆𝑖 along with 

the TGPR model 𝑓(𝑆𝑖,𝑇)(𝒙)  from the target training 

data and the source domain data.  

 

3 EVALUATION 

This section evaluates the effectiveness of the pro-

posed transfer leaning-based slip prediction method.  

For the evaluation, a synthetic slip dataset shown in 

Fig. 2 was used. This dataset consists of artificial slip-

slope data on eight different terrain types (domains). 

Each domain data was generated by randomly sam-

pling data points from the probability distributions of 

the corresponding artificial latent slip functions with 

some measurement noises. In this study, one of the 

eight domains was set as the target domain to be pre-

dicted, and the rest of all domains were set as the 

source domains. Among all data, low slope data of the 

target domain and all source data were used for train-

ing the MSTGPR model.  

In this evaluation, the covariance function given by Eq. 

9 was used for the GPR and MSTGPR.  

𝑘(𝒙, 𝒙′) = 𝑘1 exp(−𝑘2|𝒙 − 𝒙′|2) + 𝑘3 + 𝑘4𝒙𝑇𝒙′ (9) 

This covariance function, which also appears in [11], 

was selected since it showed better prediction perfor-

mance than the widely used squared exponential func-

tion in this study although the differences were not sig-

nificant.  

The weight for each source domain in Eq. 1 was deter-

mined by 𝑤𝑖 = exp(𝜆𝑖) /∑ exp(𝜆𝑖) to assign a higher 

weight to a source domain with higher similarity to the 

target domain. 

 

3.1 Evaluation 1 

In this first evaluation, this study compared the predic-

tion accuracies (root mean squared errors, RMSEs) of 

different prediction methods: (a) GPR without transfer, 

(b) MSTGPR with all sources transferred, and (c) 

MSTGPR with sources with high similarity trans-

ferred.  

In this evaluation, the target domain data was split into 

training and test data as follows: the data points with 

the slope lower than 10º were used for training and 

those higher than 10º were used for evaluation. All of 

the source domain data were used for training of 

MSTGPR. In the method (a), the slip model of the tar-

get domain was learned based on the general GPR 

Figure 2: Synthetic dataset for evaluating the pro-

posed slip prediction method. The dataset consists of 

the slip-slope data of eight terrain types. These data 

were generated by randomly sampled from noise-

added artificial latent slip functions. 
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described in Section 2.1 using only the training data of 

the target domain. In (b) and (c), on the other hand, the 

target slip model was learned based on the proposed 

MSTGPR of Section 2.2 using both the target do-

main’s training data and the source domain data.  

Fig. 3 shows example prediction results of the three 

methods when the target domain was set to Terrain 3, 

and Table 1 lists the corresponding RMSEs of these 

methods.  

The prediction result of the basic GPR is shown in Fig. 

3 (a). The learned GPR model represents to some ex-

tent the slip in the range of the training data. However, 

large prediction errors can be observed with the pre-

dictive mean slip significantly underestimated from 

the true values. In addition, the predicted confidence 

bound could not capture most of the true slip values. 

As this result shows, predicting the slippage on high 

risk terrains out of the training data range is challeng-

ing as the prediction is basically an extrapolation prob-

lem and the model can be easily overfit to the training 

data of lower risk terrains.  

Fig. 3 (b) shows the prediction model learned based on 

the proposed method with all source domain model 

transferred. Compared to the method (a), the RMSE 

reduced by 41.4%, and the confidence bound covers 

all test data.  

Fig. 3 (c) shows the prediction result based on the pro-

posed method using the slip modes of selective source 

domains. In this study, the models of the source do-

mains with the learned similarity of 𝜆𝑖 > 0.7 (Terrains 

2, 4, and 5) were used for building the MSTGPR 

model (Eq. 1). As shown in Fig. 3 (c), the predictive 

accuracy was improved, and the confidence bound be-

came tighter by selectively transferring the source do-

main information. The method (c) resulted in the 

RMSE 53.2% lower than the GPR without transfer and 

that 20.9% lower than the MSTGPR with all source 

models transferred.  

 

Table 1: Slip prediction errors (RMSEs) of different 

regression methods. 

Method RMSE 

(a) GPR (no transfer) 0.432 

(b) MSTGPR with all sources transferred 0.253 

(c) MSTGPR with selective sources 0.200 

 

 

 

3.2 Evaluation 2 

The next evaluation assessed the influence of the input 

slope range of the training data on the predictive accu-

racy of the rover slippage. In this evaluation, the upper 

bound of the slope angle in the target training data was 

varied from 5º to 30º, and 20 training data were 

(a) GPR (no transfer) 

(b) MSTGPR with all source information 

(c) MSTGPR with selective source information 

 Figure 3: Example results of the slip prediction 

without and with the knowledge transferred from 

multiple source domains. The red curve repre-

sents the predictive mean whereas the blue shaded 

area represents the 2-standard deviation around 

the mean. The black curve represents the true la-

tent slip function from which the data was sam-

pled. 
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sampled from the underlying latent function with each 

selected upper bound, as shown in Fig. 4 (a).  

Fig. 4 (b) shows the example relationships between the 

slip prediction error and the upper bound of the slope 

in the target training data. Similarly to the previous 

evaluation, results of three methods (a) GPR without 

transfer, (b) MSTGPR with all source models trans-

ferred, and (c) MSTGPR with selective source models 

(those with 𝜆𝑖 > 0.5) were plotted in Fig 4 (b). When 

learned from the training data with slope upper bound 

lower than 20º, the GPR without transfer resulted in 

the highest prediction errors. Within this range, the er-

ror could be reduced by using the knowledge of source 

domains based on the proposed method.  

On the other hand, when the models were learned from 

the training data with the upper slope angle higher than 

or equal to 20º, no measurable difference can be seen 

in the prediction errors between GPR and MSTGPR. 

This is because the prediction accuracy of the GPR 

could be improve by using the added slip data on 

higher slopes.  

 

3.3 Discussions 

From the above observations, it was shown that the 

proposed method can improve the slip prediction ac-

curacy when available training data is limited to only 

those obtained on benign terrains. Additionally, it was 

also shown that the prediction accuracy of the pro-

posed method can be further improved by selecting 

source domains with high similarity to the target do-

main.  

On the other hand, if sufficient data is available for 

learning the prediction model, the improvement by the 

transfer learning will be very limited. In such situa-

tions, simply using the basic GPR is preferable be-

cause of its lower computational cost and better learn-

ing stability compared to the MSTGPR.  

Note that, this paper only shows the results of the case 

where the target domain was set to Terrain 3 which 

shows average slip-slope characteristic among all do-

mains. The predictive accuracy of the proposed 

method differs depending on which domain is chosen 

as a target, and depending on available source domains 

to be transferred. For example, as Terrains 1 and 8 are 

located at the edges among all domains, the proposed 

method cannot significantly improve the prediction 

accuracy. How to utilize available source domain data 

when the slip characteristic of the target domain 

largely differs from that of the source domains is one 

of the important future work. One possible strategy is 

simply avoiding such terrains if high risk is expected.  

 

4 CONCLUSION 

This paper proposed a transfer regression method to 

improve the slip prediction accuracy when in-situ trav-

erse data only on gentle terrains are available for learn-

ing the prediction model. Combined with the limited 

in-situ data, the proposed method leverages traverse 

experiences on multiple types of terrains to boost the 

slip prediction accuracy in such situations. The effec-

tiveness of the proposed method was shown using a 

synthetic slip dataset. The proposed method is espe-

cially effective at very early stage of exploration mis-

sions. 

One of the important future works is to improve the 

proposed method by incorporating a method to more 

effectively select and utilize source domain 

knowledge to transfer. The current approach only uses 

the slip-slope data for learning the weight for each 

source domain. Combining other sensory information, 

such as image textures, may be effective. In addition, 

in this paper, the proposed method was only evaluated 

(a) Training data with various slope upper 

bounds. 

(b) Prediction errors 

ranges Figure 4: Comparison of the slip prediction er-

rors of the models learned from training data of 

different terrain inclination upper bounds. 
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with the synthetic dataset. Currently the authors are 

planning to conduct traverse experiments of a test 

rover on various types of terrains to obtain a real da-

taset.  
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