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ABSTRACT

Lunar ice, likely to be found in the highest abundance
near the poles, could be a source of water for drinking,
oxygen for breathing, and for producing propellants
for venturing beyond the moon to deep space. Via-
bility depends on specifics of the accessibility, depth,
and concentration of the ice, which can only be deter-
mined by surface missions of repeated robotic explo-
rations over time. Remote sensing indicates that ice
concentrates in low, shadowed depressions that may or
may not be close to safe landing sites [1]. Navigat-
ing through polar shadows and darkness necessitates
capability for sensing in the dark. This paper profiles
the perception system of MoonRanger, a micro-rover
manifested on a 2022 NASA CLPS flight [2], which
will be the first polar mission to perform in situ mea-
surement of lunar ice.

Figure 1: Artist rendering of MoonRanger

1 INTRODUCTION

This paper addresses the challenges of and solutions
for micro-rover perception in darkness, navigation and
mapping autonomy with limited computing and en-
ergy. We propose a computationally-inexpensive and
low-power localization and mapping solution for rover
navigation in darkness through projection of light
stripes, monocular vision, wheel encoding, and inertial
sensing. Our approach extends the work done in [3]
by requiring one camera instead of two, using multiple
lasers, providing a calibration scheme for the lasers,
and a complete localization and mapping solution.

Before runtime, we use a camera-calibration grid to
calibrate the lasers through the process outlined by [4].

As the rover drives, the vision system captures images
of the laser-lines on the approaching terrain. The cal-
ibration enables the generation of 3D scan lines in the
rover’s local reference frame. We fuse these scan-lines
into a global point cloud using a pose estimate from an
Extended Kalman Filter [5] that uses wheel encoding
and inertial measurement data.

This paper is organized as follows. In section 2, we
describe the light striping technique for 3D reconstruc-
tion. In section 3, we derive the calibration of the light
stripe system. In section 4, we describe the Extended
Kalman Filter used aboard MoonRanger for pose esti-
mation. In section 5, we combine the pose estimates
with the light stripe to generate the point cloud used
for terrain mapping. We analyze the integrated per-
ception system on test data in a laboratory setting and
discuss the viability of the system for the MoonRanger
mission.

2 LIGHT STRIPING RECONSTRUCTION

Key to any robotic mapping solution is the measure-
ment of the position of points on the terrain surface.
Environmental conditions and application specific re-
quirements dictate the use of particular algorithms and
sensors. A large class of sensors are impossible for
MoonRanger given the extreme environment of space,
the rover’s power budget, and the mission’s finan-
cial budget for hardware. Furthermore, the rover’s on
board computer is responsible for running numerous
processes simultaneously, including communication,
planning, and health monitoring, severely limiting the
available resources.

With its limited computing, the Mars Sojourner rover
employed a simple but robust system using multiple
light stripes and a pair of cameras [6]. The onboard
algorithm analyzed deviations in the stripes to deter-
mine if an obstacle lay ahead. Depending on the im-
age, it would navigate in one of a set of fixed motion
sequences. This system was suitable due to the low
computational overhead and the availability of space-
worthy cameras and lasers.

Inspired by the success of this system and accounting
for our mission constraints, we will use a light stripe
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based mapping algorithm aboard MoonRanger. Our
algorithm processes images of the lasers to generate a
3D point cloud model of the terrain. Reconstruction
using light stripes has been known since the 1970s [7]
[8] [9] and has proven successful in many application
areas.

Our reconstruction algorithm requires a monocular
camera and at least one planar light stripe fixed rela-
tive to each other. Multiple light stripes increase the
density of the constructed map and allow for detection
at different distances at the cost of increased computa-
tional overhead, power consumption, and mass. After
testing numerous configurations, we opted for two hor-
izontal light stripes for MoonRanger, shown in Fig. 2.

Figure 2: Dual-laser setup on a testing platform

The first step of setting up the algorithm is to calibrate
the camera for its calibration matrix [10]

K =

 fx 0 cx

0 fy cy

0 0 1

 , (1)

where fx and fy are the focal lengths of the sensor x
and y dimensions and (cx, cy) is the optical center of
the camera in pixels and its distortion parameters and
its the radial distortion coefficients, k1, k2, and k3, and
tangential distortion coefficients, p1 and p2.

We then determine the plane equation of the light
stripe relative to the camera as shown in Fig. 3.

AX + BY + CZ + D = 0 (2)

The procedure to determine this plane follows the
methodology of [4] and is described in detail in sec-
tion 3.

With this plane equation, a pixel (x,y) is mapped to the
3D coordinates (X, Y, Z) with the following equations
[10]:

X =
x − cx

fx
Z (3)

Figure 3: Light plane relative to camera

Y =
y − cy

fy
Z (4)

Z =
−D fx fy

A(x − cx) fy + B(y − cy) fx + C fx fy
(5)

A typical view from the onboard camera of the rover
is shown in Fig. 4. With classical image processing
techniques [11], the pixel coordinates of the laser in
the image is found and then mapped to 3D points using
Eqs. 3-5. Each image outputs a set of 3D points in the
camera’s coordinate frame. The frequency of images
is increased at the cost of greater computational over-
head. Since MoonRanger travels at its fastest speed at
5 cm/s, a processing time of 2 Hz is sufficient for a
high quality reconstruction.

To fuse the 3D points taken in a sequence of images
into the global frame, the camera’s transform in the
global frame for each image is necessary. This trans-
form can be determined with a pose estimation algo-
rithm paired with knowledge of the fixed configuration
of the camera relative to the pose estimation coordinate
frame.

3 LIGHT STRIPING CALIBRATION

The plane of the light stripe relative to the camera is
found through computing multiple 3D points along the
stripe and fitting a plane through these points. Cali-
bration techniques differ in the manner in which these
3D points are found. Following the methodology of
[4], we use a planar checkerboard pattern to compute
these points. This technique is very similar to cali-
brating a camera using Zhang’s method [12], and the
same checkerboard calibration pattern can be used for
both procedures. We present our implementation of [4]
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Figure 4: Above: Light Stripe in Rocky Terrain. Be-
low: Laser pixel coordinates found through image pro-
cessing

along with additions, and refer the reader to the orig-
inal paper for a detailed derivation. Our software for
calibration has been made open source and is available
at [26].

After having calibrated the camera for its intrinsic pa-
rameters, we generate a sequence of images of the light
stripe projected onto the checkerboard calibration pat-
tern, such as in Fig. 5.

Figure 5: Light Stripe Projected on Checkerboard Cal-
ibration Pattern

For each image, we use the calibration matrix and dis-
tortion parameters to undistort the image. In 3D space
the laser intersects the calibration grid at some Q be-
tween some three known points A, B, and C, as shown

in Fig. 6. In the image plane, these points correspond
to 2D coordinates q, a, b, and c.

Figure 6: Both sets of points in 3D and 2D

The geometric property of the cross ratio is preserved
between the two line segments containing the points
[4][13]:

CR(a, q, b, c) = CR(A,Q, B,C) (6)

where

CR(A, B,C,D) =
AC

BC

BD

AD
(7)

and xy is the Euclidean distance between points x and
y, either in 2D or 3D.

Since the dimensions of the squares of the checker-
board are known, we can fix a world frame to the up-
per left corner of the checkerboard and determine A,
B, and C. To find a, b, and c, we use the Harris corner
detector typically found in camera calibration pack-
ages [14] to determine their pixel coordinates in the
image frame. We convert them to the normalized cam-
era frame by applying K−1 to extract coordinates a, b,
and c. To find point q, we use image processing tech-
niques to find the intersection between the light stripe
and the line segment ac, as shown in Fig. 7.

Substituting all of the values in Eq. 7 and another con-
straint QB + BC = QC, we can solve for QB and QC
and then extract Q. Since Q is in the world frame of the
checkerboard calibration pattern, we need to transform
it to the camera frame.

We use Perspective-n-Point algorithm [14][15] on the
original image to find the transformation from the
world frame to the camera frame, and use this trans-
formation to find Qc, the point Q in the camera frame.
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Figure 7: Search for point q between points a and c in
the image

We repeat the procedure to obtain at least three non-
collinear points on the laser plane. Then we solve for
the plane equation (Eq. 2) using the RANdom SAm-
ple Consensus (RANSAC) algorithm [16] and singular
value decomposition [17].

4 POSE ESTIMATION

Navigation in shadowed regions prevents the use of
the visual odometry techniques used for modern space
rovers [18]. In these dark regions, MoonRanger will
have to rely on its inertial measurement unit (IMU) and
wheel encoding for pose estimation. For the mission,
we selected the STIM-300 from Sensonor [19]. This
device has undergone extensive environmental testing
for space qualification and flown on previous CubeSat
missions.

To fuse together the IMU and wheel encoding data,
an Error-State Extended Kalman Filter was developed
based on [3] and [20]. Similar systems have proven
highly successful for commercial and research appli-
cations [21] [22]. The details of the derivation of the
algorithm can be found with its open source imple-
mentation at [25].

Figure 8: Kalman Filter Block Diagram

A block diagram of the subsystem is shown in Fig. 8.
In our algorithm, we estimate the position, velocity,
orientation, gyroscope bias, and accelerometer bias.
The accelerometer and gyroscope are integrated to pre-
dict position, and this prediction is periodically cor-
rected using a kinematic model of the rover fed data
from wheel encoders. While the rover is stationary,
the accelerometer is used to correct orientation [3].
The implementation can easily be modified for regions
where additional sensors can be used such as sun sen-
sors for heading correction and visual odometry for
pose and attitude correction.

One key difference between this algorithm running on
Earth and on the Moon is the value of the gravitational
constant. With a rough knowledge of the landing site,
this value can be predetermined using existing grav-
ity field models of the lunar surface [23]. Further-
more, many algorithms take into account the rotation
of the Earth for higher fidelity models of the dynamics.
These terms were neglected in our derivation.

5 INTEGRATED PERCEPTION PIPELINE

With the combination of light stripe calibration, recon-
struction, and a version of the pose estimation algo-
rithm, the proposed solution was tested in a laboratory
setting, as shown in Fig. 9. The rover was manually
driven straight on a smooth floor through a set of obsta-
cles in a dark room, taking images at 2 Hz. Although
five lasers can be observed in the figure, only the two
red horizontal lasers were used in the algorithm. All
lasers were calibrated following the methodology in
section 3. Fusing the reconstruction of 3D data for
each image from section 2 and integrating only wheel
encoder data, a point cloud was generated as shown in
Fig. 10. In the figure, varying color demonstrates the
change in elevation.

Although this result gives a geometrically accurate and
dense reconstruction of the terrain for a benign labora-
tory setting, the system’s capability for reconstruction
in outdoor rough terrain remains to be determined. The
quality of the reconstructed map depends significantly
on the quality of pose estimation. In an outdoor set-
ting, the rover would be susceptible to slip, falling over
rocks, and driving over rising or descending terrain, all
of which would drastically influence the quality of the
pose estimate and hence the output of the map.

Nonetheless, we can conclude that given a high quality
pose estimate, the light striping technique is capable of
generating a dense and appropriately scaled pointcloud
usable in obstacle avoidance and mapping algorithms
such as [24]. Further outdoor testing with the filter
developed in section 4 will be performed to quantify
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Figure 9: Integrated Light Striping Reconstruction
and Pose Estimator

the capability of the overall system.

6 CONCLUSION

The core result is that our method can provide an ac-
curately scaled and dense point cloud in a completely
dark setting, given a reasonable pose estimate. We pro-
vide an easy method to set up the system by calibrat-
ing light stripes using a checkerboard pattern and using
them as part of a reconstruction algorithm.

In its current form, the calibration for the camera
and light striping system would be prepared pre-flight.
This is a risk to the mission since the launch could
slightly displace parts and the space environment could
affect the material properties of the camera sensor. In
future work we will investigate the extension of the
algorithm for live calibration as well as quantify the
changes in calibration for a variety of environmental
conditions. The orientation and number of lasers will
also be selected. The system will then be formally en-
gineered to meet launch standards. The algorithm will
need to be tested in rough terrain where the pose esti-
mation algorithm performance will likely deteriorate.
Given the algorithm can pass the above tests, we feel
that the system provides a low cost, low power, and
high quality map that MoonRanger can use to drive
safely in the shadowed regions of the Moon.

Figure 10: Integrated Light Striping Reconstruction
and Pose Estimator
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