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ABSTRACT

The classification of natural terrain ahead of an au-
tonomous rover can help it make decisions regarding
the traversability of various paths, but remains an
open research problem. Recent promise shown by
deep learning algorithms in general image classi-
fication has seeded research aimed at transferring
these successes to visual terrain classification. Despite
the popularity of deep learning networks, there is
still little work available on informed neural network
design procedures for specific tasks such as terrain
image classification. This work presents an algorithm
that can be used to quantify the difficulty of specific
image classification tasks and to investigate the char-
acteristics of particular difficulties and trends in a way
that is interpretable by humans. An accompanying
analytical procedure characterizes such image clas-
sification difficulties; identifying what makes some
images easily distinguishable exemplars of their class
and what makes others readily confused with other
classes.

1 INTRODUCTION

Autonomous robotics has seen considerable interest
directed at transferring deep learning successes to
their own applications - a task shown to demand
substantial effort, especially for areas requiring novel
architectures. Particularly relevant to this issue is the
scarcity of knowledge regarding network design. As
consequence, manual and automated network design
methods necessitate the training or evaluation of
many architectures, with the combined requirement
frequently seen [1][2].

While there is still much to learn about deep learning
algorithms, there is at least consensus that any finite
network’s performance may be constrained by its
capacity [3]. This trait is not the sole arbiter of
performance, however. For a given task, the amount
of information which can be learned is related to the
difficulty of the task, with more complex datasets
commanding higher-capacity architectures. The ca-
pacity of a network may be explained as a quantity
related to architecture design parameters, however,

producing a similarly concise explanation for dataset
difficulty is less straightforward.

Image quality [4], object variations [5][6][7], and
scene information [8][9], encompass some of the
many properties observable within a dataset, po-
tentially explaining confusing scenarios. Approaches
more similar to our own are those proposing the mea-
surement or identification of certain characteristics to
predict the effort demanded by a recognition task.
An example fitting this criterion is the work done by
Russakovsky et al. [5] wherein authors developed a
metric based on the number of possibly-object con-
taining windows sampled before a true class-object is
found. Similar instances of literature which explored
difficulty prediction through measurement of image
characteristics are [7] and [10] which considered
difficulty as related to an various pixel value statistics.
Although the consideration of identifiable traits may
allow transfer of information to architecture design,
methods thus far assume fixed difficulty attributes, not
always guaranteed to be relevant.

Given that any predetermined feature is unlikely to
capture all scenarios of image classification difficulty,
some researchers have chosen to focus on complexity
metrics with a more implicit relation to image charac-
teristics. Recent work by Scheidegger et al. [11] has
taken to this approach, determining dataset complex-
ity as the performance achievable by various sized
deep learning architectures. The authors’ estimated
difficulty, or effort, being a quantity found in relation
to the networks’ size and accuracy. Another example,
taking a significantly different route, is Ionescu et al.’s
study [6] of human response time as a predictor of
image difficulty. In this study, authors define effort as
the average time expended by human participants on
a visual search task.

Summarizing - the use of interpretable image charac-
teristics as a means to estimate classification difficulty
has potential utility for architecture design, however
current methods impose rigidly-defined features, thus
limiting their scope. In contrast, approaches which
are not explicitly concerned with attributes lending to
challenge may possibly be adapted to a broader range
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of use-cases, but in doing so, sacrifice the ability
to extract information relevant to classifier design.
While it can be argued that estimating difficulty
using a method directly tied to neural networks might
accomplish this goal, the resulting knowledge only
informs what was successful, bearing no indication
of why that was.

We attempt to consolidate the positive aspects of both
noted directions, seeking to estimate dataset difficulty.
In doing so, we acheive the following as primary
contributions for our work:

• We propose a novel algorithm for sequencing im-
ages with respect to their difficulty, as defined by
the size of their reduced representation necessary
for class separation.

• We detail an analytical pipeline for extracting a
dataset’s image-class traits relevant to classifier
design.

• We present case studies of our method applied to
image datasets used for handwritten digit recogni-
tion, object recognition, and Martian terrain classi-
fication.

In the next section, we outline the ReDiHull al-
gorithm, its main components, and its output data.
Section 3 provides detailed instructions for producing
and analyzing derived data to learn characteristics of
a given image classification dataset. Section 4 both
illustrates and discusses select results obtained by
applying the algorithm and analysis for four different
image classification datasets.

2 ALGORITHM

Our proposed algorithm is an iterative search for
a reduced dimensionality representation where all
classes in a dataset are contained in non-overlapping
subspaces. In this section, we explain the ReDiHull
(reduced-dimensionality class-convex hull) algorithm
driving our method.

Let X ∈ Rn×m represent a set of n samples {xi}n−1
i=0 ,

produced by flattening images of equal height, width,
and depth, into m-length vectors. We assume X is
normalized by subtracting the empirical mean x̄ =
1
n

∑n−1
i=0 xi from each flattened image.

2.1 Dimensionality Reduction

Incremental analysis of the latent representation Z
produced for input data X allows us to make in-
ferential observations of both amount and type(s) of
information required to separate classes. In order for
interpretable results to be extracted, the dimensional-
ity reducing model and resulting representation have
the following requirements: (i) variables and trans-
formed features are ordered by their optimality with
respect to some metric and (ii) the change in distance

between any two points produced by a change in their
representation’s dimensionality Rd → Rd+1 must be
greater than or equal to zero.

In order to apply the exact analytical procedure out-
lined in section 3 necessitates a third requirement: The
chosen dimensionality reducing technique should also
allow for visualization of the latent variables.

We will denote the transformation f which maps our
input X ∈ Rn×m to a latent representation Zd ∈
Rn×d as:

f(X, d) : X→ Zd (1)

1) Principal Component Analysis: For this study,
we achieve dimensionality reduction using principal
component analysis (PCA) - an orthogonal, linear
transformation, wherein samples are projected onto a
coordinate system whose axes encode the directions
of greatest variation within the applied training data.
It follows from this definition that PCA satisfies
the first imposed requirement by ranking principal
components with respect to the amount of variation
they capture. Further, compliance with the second
requirement is guaranteed by the transformation’s
orthogonality.

2.2 Convex Hull

We model the class-occupied subspace as the convex
hull produced by its constituent samples. Employing
this definition allows us to evaluate our ability to
distinguish between classes within a latent space,
regardless of the corresponding transformation’s re-
lation to this criterion.

Whenever a convex-hull is referenced, we refer to its
corresponding class as the hull-class ψ whose subset
of dataset samples is given by Xψ . The convex-hull
itself may be determined as the set of all convex
combinations of points x ⊂ Xψ , with nψ being the
number of points that make up Xψ . As our analysis
is performed exclusively on the latent representation
f(X, d) we provide the convex-hull’s definition as
given by [12], written in terms of z ⊂ Zψd .

Conv
(
Zψd

)
≡

nψ−1∑
i=0

Aizi

∣∣∣∣∣∣ ∀i : Ai ≥ 0 and
nψ−1∑
i=0

Ai = 1

 (2)

Now, with a class-occupied subspace modeled by that
class’ convex hull in the latent space, we determine
overlap which we recall drives our definition of
dataset complexity. With a hull-class’ role defined,
the next step it to form a class-pair (ω, ψ) for which
to compute overlap, through selection of a reference-
class ω. It follows from (2) that if a point q ⊂ Zωd
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is not within the set of possible convex combinations
produced by Conv(Zψd ), it is not contained within the
convex hull. We pose this as a linear programming
problem of the following form:

Find q subject to q =

nψ−1∑
i=0

Aizi ,

nψ−1∑
i=0

Ai = 1

and Ai ≥ 0 for all i = 0, ..., nψ − 1 (3)

This may be recognized as a linear feasibility prob-
lem, where q is a point belonging to the projected
reference class ω and zi is a point belonging to the
projected hull class ψ.

2.3 Summary

The previous sections discussed the two central
pieces of our ReDiHull algorithm - a dimensionality-
reducing technique and class convex hull model.
Here, we summarize the algorithm, allowing for un-
derstanding of its output.

As the dimensionality of the reduced-dimension rep-
resentation is incrementally increased, between-class
overlap can decrease. The number of dimensions
needed to separate out the different classes is a
measure of classification complexity.

ReDiHull is summarized in pseudo-code, shown as
algorithm 1. We have as input (i) a reference-class
subset, either training or testing, and (ii) a hull-class
subset. We initialize the algorithm at dimension d =
1, with the set of overlapping points initialized with
the entire reference-class subset, i.e., Θ

(ψω)
0 = Xω .

The algorithm is presented in a form which produces
full enumeration of overlaps at each d for a given
class pair, by operating recursively. Expanding this
to datasets having more classes amounts to applying
ReDiHull to all possible class-pair permutations.

Algorithm 1: ReDiHull Algorithm

Input: Θ
(ψ ω)
d− , Xψ, d

begin
Zψd ←− f

(
Xψ, d

)
Θ

(ψ ω)
d ←− {q | ∀ q : q ⊂ Θ

(ψ ω)
d− and

f (q, d) ∈ Conv
(
Zψd

)}
if
∣∣∣Θ(ψ ω)

d

∣∣∣ > 0 and d < m then

ReDiHull
(
Θ

(ψ ω)
d , Xψ, d+1

)
end

end

3 ANALYSIS

The ReDiHull algorithm, detailed in section 2, pro-
duces Θ = {Θ1, ..., ΘD} the sets of points from

class ω which overlap with hull-class ψ in each
examined latent space, where D is the largest d eval-
uated up to termination of the algorithm. This section
outlines the procedure(s) applied to the algorithm’s
output, allowing us to uncover valuable characteristics
hidden within the given dataset - characteristics such
as those lending themselves to increased difficulty in
distinguishing an ω-labelled image from the images
of class ψ.

While the analysis will produce identical results when
applied to output as is, we have found it to be concep-
tually advantageous to apply a simple transformation
such that we instead examine the change in sets
of overlapping points with respect to the change in
dimensionality of the projective space. For a set of
overlapping points at dimensionality d−1 and set of
overlapping points at dimensionality d the change is
simply the difference between the two sets:

Ξd = Θd −Θd−1 (4)

We refer to subset Ξd as the points which were sep-
arated at dimensionality-d. All visualized statistics,
described in the sections 3.1 through 3.3, are obtained
from the transformed algorithm output given by (4).

3.1 Locating Image Characteristics

Here we define the distributions representing the
empirical probability of a point being separated at a
given dimension. Following this definition, we explain
the types of phenomena that we seek to identify
within these distributions.

Now, let us consider a situation in which we are given
Ξd the subset of test class ω’s points which were
separated from the convex hull formed by class ψ
using a d-dimensional space. This subset Ξd corre-
sponds to a fraction of class ω’s total points and as
such, this fraction is the empirical probability that a
random point belonging to class ω, which overlaps
with the convex hull formed by class ψ in a d−1
dimensional space, will be separated by incrementing
to a d-dimensional space:

P
(
q /∈ Conv(Zψ)

∣∣∣ d, q ⊂ Zω
)

=
|Ξd |
|Xω |

(5)

We note that
⋃d=D
d=1 Ξd = Xω .

By repeating this over each dimensional space for
which overlap exists, we obtain an empirical sepa-
ration probability distribution for a given class pair
such as those in Fig. 3a. It is important to note that
this probability distribution gives a measure of dataset
complexity. Distributions with long tails extending
to high values of d are capturing complexity that
requires many dimensions to separate out.

Continuing in the context of Fig. 3a, we note an
underlying primary distribution which is uni-modal
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and spans the full range of dimensions shown. From
our experiments, we have observed that this type of
uni-modal shape occurs for the majority of image
classes, albeit with slight variations.

In order to ascertain regions related to meaning-
ful characteristics, we identify abnormal phenom-
ena within the obtained distributions. Abnormality
is determined relative to the primary distribution.
An example of such an abnormality can be seen
within Fig. 3a at the seventeenth dimension, where
we observe an acute spike in separability, relative to
the primary distribution. We have found that these
types of spikes are particularly useful in determining
separating characteristics; naturally-occurring char-
acteristics which invoke a high degree of separability
between respective image classes.

3.2 Determining Image Characteristics

In the previous step, we defined a separation probabil-
ity distribution, then summarized trends and phenom-
ena occurring within these distributions that may re-
late to potentially valuable dataset characteristics. The
following step allows us to discover the attributes tied
to the identified regions of interest. In order to achieve
this goal, we construct projected value histograms
from which we examine the latent model applied to
samples forming the probability distribution.

For any determined probability distribution, there is
a set of separated samples associated with each di-
mension, Ξd. Now we analyze the transformed values
f(Ξd) at each dimension. As an example, studying
the transformed values might allow us to learn that
a class’ behavior at a certain dimensionality d is
due to a strong, positive correlation with the kth
latent variable, relative to the other classes. While
this allows us to understand why the abnormality
occurred, the supplementary information provided by
visualizing the latent variables allow us to describe
the image characteristic it relates to.

1) Description of the Projected Value Histograms:
Visualizing the distributions of projected values
as a function of projected-space dimensionality is
achieved through plots such as that shown in Fig. 3b.

Each plot corresponds to projections onto a single
latent variable at index (k) indicated on the far-
left. Within the referred figure, we are shown pro-
jections onto the latent variable at index (11). For
this single latent feature, the maximum and minimum
values, max Z(k) and min Z(k), are determined from
the training set, then used to create representations
of the positive and negative extremal observations,
indicated by the tip of the upwards and downwards
facing arrows respectively. The values may be seen by
examining the chart’s vertical axis as the maximum
and minimum values are also used to define the

histogram. We partition the linear range formed by
these extremal values into 40 bins of equal width.
Application of a histogram allows for the 3D topology
generated by the distribution of projected values to
be visualized within a 2D space. Densely-distributed
regions are shown using darker-colored bins whereas
bins containing no elements are white. While each
plot corresponds to projections onto a single latent
feature, a plot’s horizontal axis may extend to dimen-
sionalities for which projected values Z(k) have no
contribution to separability. To distinguish between
dimensionalities d < k and d ≥ k, histogram data
is shown in grayscale for the former-defined range.
Within the context of Fig. 3b, although we are shown
projections relevant to the 17th component, we are
shown projections shown for samples separated prior
to the inclusion of this component, as well as those
which proceede it.
The black piecewise-linear trendline(s) show the
change in mean of projected values between d = k−1
and d = k for the projection of separated images
Ξd. The opacity of a curve segment is proportional
to the number of points separated at d = k, with
a higher opacity indicating more points separated.
The standard deviations of projected values at each
dimension are displayed as well, with downwards
pointing chevrons denoting one standard deviation
above the mean.

3.3 Visualizing Image Characteristics
When possible, we have found it beneficial to produce
a visualization of the determined characteristic(s)
using the images which form the abnormality or
trend which was used to identify them. The qualita-
tive information gained through these visualizations
allows us to describe characteristic behaviors with
greater certainty. Often, the combination of number of
samples and dimensionality range for which the be-
havior is defined impedes our ability to extract useful
information when all images are viewed simultane-
ously. To overcome this challenge, we substitute each
dimension-specific image subset with a corresponding
generalization.
1) Description of the Image Difficulty Spectra: Once
again, the data forming these figures extends from the
obtained class pair sets of separated samples associ-
ated with each dimension. To obtain a generalization
x̄ of the images separated at each dimension, we
simply compute the mean of the n = |Ξd| number
of images within each set x̄ = 1

n

∑n
i=1 xi. Examples

of these types of visualizations can be found at the
bottom rows of Fig. 4 and Fig. 5a.

4 EXPERIMENTS & RESULTS
Here we present results in the form of case studies.
The underlying intention is to (1) illustrate the out-
lined technique for improved clarity of its application,
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(2) demonstrate concise examples of the types of
extracted characteristics and their potential utility, and
(3) validate the relevance of our method to the image
classification task.

4.1 MNIST

Produced by [13], the MNIST dataset contains
monochrome images of handwritten digits. For the
context of this work, MNIST assumes the role of a
less challenging image classification task, with even
simple models achieving less than 10% error. To
produce the discussed results, we designated 60 000
images to a training set and the remaining 10 000 to
a test set.

(a)

(b)

Figure 1: Difficulty spectra produced for MNIST
(a) Images from digit Zero which are increasingly
difficulty to separate from digit One (b) Images from
digit Nine which are increasingly difficulty to separate
from digit Seven.

The results shown in Fig. 1 provide examples of
the visualizations described in 3.3, obtained through
applying the algorithm to MNIST. These results were
chosen as they illustrate clear visual interpretations of
a trend-like behavior, as well as provide recognition
scenarios of contrasting difficulty. For reference, a
linear discriminant analysis (LDA) model trained on
MNIST then evaluated against the test set never
erroneously predicts an image containing digit Zero
as containing digit One. When attempting to classify
digit Nine images 50% of the error is attributed to
digit Seven.

It is clear that for either scenario, images which re-
quire more dimensions to achieve separability appear
increasingly similar to the respective convex hull-
defining digit. Applying a more thorough examination
reveals that the similarity can be attributed to distinct
variations of the hull-defining digits. As example, the
images of digit Zero which required 3 dimensions
to separate from digit One are those which are most
similar to the sans-serif, slanted variation of digit One.

Images in this dataset contain little to no variation
in contrast, number of objects, or object’s position(s).
As such, using a metric which uses such attributes
as a basis might provide indication that classifica-
tion of MNIST images is not overtly difficult as a
whole, however, such attributes would not sufficiently

describe the specific class-pair difficulties observed
using our method. With the exception of serif dif-
ferences, the digit variations lending themselves to
increased difficulty are mostly linear transformations
(e.g. rotation, scale, skew).

4.2 CIFAR-10

We apply our technique to CIFAR-10 - an image
classification dataset depicting 10 classes of real-
world objects and animals [14]. For results shown,
the dataset was split into 50 000 training images and
10 000 test images. From this evaluation, we choose
to highlight observations made in regards to the Deer
class, then validate their relevance to classification
through qualitative comparison of a feature computed
using softmax regression, discriminating Deer from
classes.

Figure 2: We trained
a softmax classifier
against CIFAR-10,
then extracted the
discriminating feature
learned for Deer.
This visual provides a
reference for relating
the observations drawn
using our technique to
a classification system.

We begin our discussion by examining the probability
distribution shown in Fig. 3a. Doing so reveals a
large spike in separability at seventeen dimensions,
which, as mentioned in section 3.1, constitutes an
anomalous behavior, with regard to the dominant
trend. To determine the cause of the observed be-
havior, we refer to the corresponding projected value
distribution (Fig. 3b). Through analysis of the pro-
jected data, it is clear that the characteristic related
to this behavior is that images belonging to the Deer
class have a stronger, positive correlation with the
seventeenth loading vector, relative to images belong-
ing to the Horse class. To the left of the projected
value distribution, we are shown that the seventeenth
loading vector encodes green (positive) to magenta
(negative) overall image content. Summarizing these
observations - images containing a significant amount
of green content are likely to depict a Deer. Moreover,
the result shown in Fig. 2 allows us to confirm this
observation’s relevance, demonstrating that softmax
regression model determines the color green to be
indicative of the Deer class.

One possible application would be define a simple
feature detector, thus leveraging the separability ob-
served for green-colored content. As mostly-green
images usually correspond to Deer, a high-confidence
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(a)

(b)

Figure 3: Resulting visualizations from applying our
algorithm and analytical pipeline to CIFAR-10. (a)
shows the probability of separation for a given
dimensional-space when separating Deer from the
Horse class convex hull. (b) shows the histograms
of projected values, allowing for interpretation of the
behavior observed in the probability distribution.

prediction could be quickly obtained for preliminary
decision making, while simultaneously testing for
additional features to refine the prediction. Moreover,
the feature itself is mostly uniform thus it is likely
that it may be compressed significantly.
If we assume some prior knowledge of the problem,
the observation for separating Deer from other classes
may lead one to formulate a converse application for
this characteristic. Green colored background does
not form a causal relation with Deer, thus preventing
a classifier from associating this feature with Deer
images may result in a more robust system.

4.3 JPL
The JPL dataset, procured by Shukla and Skonieczny
in [15], serves as an example of a real-world scenario.
Samples depict bedrock, sand, or rock-strewn terrains,
selected from a subset of images captured by the Op-
portunity Mars Exploration Rover during its deploy-
ment. Due to the terrains’ lack of structured-features
and high visual similarity, the dataset contains many
unique classification challenges.

(a) (b)

Figure 4: Results obtained for the Martian terrain
dataset introduced by [15]. From the first to last
row - probability of separation distributions, pro-
jected values histograms, and difficulty spectra for (a)
Bedrock images separated from Sand (b) Sand images
separated from Bedrock

Fig. 4 compares the statistics extracted when attempt-
ing to separate bedrock from sand’s convex hull, to
the opposite scenario of trying to separate sand from
Bedrock’s convex hull. In either corresponding prob-
ability distribution, there are no notable spikes of po-
tential interest. Additionally, while bedrock displays
a mostly, single modal probability distribution, no
general behavior is apparent for the case of separating
sand from bedrock. Moving on to the distributions of
projected values onto the first loading vector, it is
evident that Bedrock images requiring more dimen-
sions to separate from sand have a projected value
near zero, whereas those requiring few dimensions
have a large, positive projected value. Conversely,
Sand images which separate in few dimensions from
Bedrock’s convex hull have a large negative projec-
tion onto this loading vector. As sand images require
more dimensions to separate, there is a clear trend
that negative-valued projections tend towards zero.
By applying these explanations to the correspond-
ing sets of mean images, our interpretations have a
clear qualitative meaning - Bedrock images which
are more difficult to distinguish from Sand are in
general darker, which corresponds to difficulty arising
during circumstances of low light or low exposure.
In contrast, Sand images which are more difficult to
distinguish from Bedrock are lighter overall, indicat-
ing classification difficulty when captured with high
exposure.

4.4 CSA MET
Developed by Mission Control Space Services, the
CSA MET dataset is composed of terrain images cap-
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tured at the Canadian Space Agency Mars Emulation
Terrain site in Quebec, Canada. This dataset shares a
purpose with the JPL martian terrain dataset - training
and evaluating autonomous soil assessment systems
for autonomous path planning and risk assessment.
The datasets differ in that the CSA MET samples
are 3-channel (RGB) color images as opposed to the
JPL datasets’ grayscale NavCam images. Further, the
task in the CSA MET dataset is semantic segmenta-
tion rather than image classification. Annotations are
manually produced polygonal outlines of the relevant
terrains within each image.

The goal of segmentation is to partition images such
that each pixel is assigned a class label. To analyze
segmentation datasets using our technique, we par-
tition the the annotated images into smaller, square
patches, providing sample images of unmixed terrain
classes.

(a)

(b)

Figure 5: Resulting visualizations from applying our
algorithm and analytical pipeline to the CSA MET
dataset. (a) shows the probability of separation dis-
tribution for Sand images separated from Bedrock im-
ages. (b) shows the PCA projected value histograms
for the 11th component using the CSA MET terrains
Sand as the reference-class and Bedrock as the hull-
class.

1) CSA MET - Anomalous Spike: The first observa-
tion to discuss is the presence of a large spike in

separability near the eleventh dimension when either
black sand, sand, or gravel is applied as a reference-
class and bedrock or gravel is applied as a hull-class.
Fig. 5a. shows the separation probability distribution
for separating sand from bedrock.

Recalling the discussion from section 3, we had
noted that, in most situations, a spike in separability
corresponds to the projection onto a distinguishing or
separating feature.

Fig. 6 shows the first 11 PCA loading vectors com-
puted for this dataset. Note that the 11th loading
vector is the first to encode a color gradient, where
part of the filter is blue and the other part is non-blue.

Figure 6: The top-11 PCA loading vectors computed
for the CSA MET dataset.

Figure 7: 100 samples each of color sand (left) and
bedrock (right) images from the CSA MET dataset.
Bedrock images include sub-regions of bluish stone
and non-blue soil.

Fig. 7 shows 100 samples each of sand and bedrock
images from the CSA MET dataset. It is clear that
the bedrock class contains many images with dis-
tinct sub-regions (of bluish stone and non-blue soil),
aligning with the main information that component
11 encodes. Sand images do not contain such color-
distinct sub-regions.

To explicitly quantify the gradient in blueness be-
tween stone and soil sub-regions of bedrock images,
as opposed to simply a gradient in brightness that
could have been captured by loading vectors 2 and
4 for example, grayscale images of the bedrock are
compared to the bedrock images’ blue channel in
Fig. 8. The blue channel data clearly shows higher
contrast than the grayscale data; this higher contrast
is further quantified by a higher standard deviation
in pixel values for the blue channel (σ = 45) vs.
grayscale (σ = 35).
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Figure 8: Grayscale (left) and blue channel (right) of
CSA MET bedrock images. Blue channel shows higher
contrast.

On the other hand, there is very little difference
between grayscale and blue channel for sand (see
Fig. 9; σ = 17 vs. σ = 19).

Figure 9: Grayscale (left) and blue channel (right)
of CSA MET sand images, with little discernible
difference in contrast.

Now looking at the projected value histogram for the
11th loading vector in Fig. 5b, the large spike in
separations of sand from bedrock at component 11
has a projected value centered very near 0. Combining
all the information discussed above suggests that sand
images become distinguishable from bedrock, in the
color CSA MET dataset, when it becomes clear the
sand images do not include much of a color gradient.

5 CONCLUSIONS
We worked towards an informed approach to de-
signing image classification systems, introducing an
algorithm and corresponding analytical procedure for
characterizing attributes related to classification dif-
ficulties. The proposed ReDiHull algorithm operates
on incrementally ordered, reduced-dimension repre-
sentations of a dataset, computing image-class overlap
statistics within each latent-space. Data derived from
the resulting statistics was used to produce probability
distributions, projected value histograms, and image
difficulty spectrum visualizations. Analysis of these
allowed us to identify anomalies and trends, uncover-
ing image characteristics related to the classification
task. We applied the outlined method to several image
datasets, demonstrating exemplars of inferred charac-
teristics and their relation to image classification.
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