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ABSTRACT

Despite advancements in LiDAR technology, stereo
cameras are still preferred for space applications [1],
due to heritage and advantages in weight, power, and
complexity of moving parts. The accuracy of stereo
vision systems is affected by their calibration and even
a small change in the position or orientation, for ex-
ample from vibration or thermal expansion, can cause
significant errors in feature matching or distance esti-
mation. These errors can lead to the failure to identify
obstacles and potentially the mission. Elaborate effort
is taken to calibrate these systems under various set-
tings before launch [3]. It is essential to ensure that
the calibration parameters still hold after deployment
on a planetary surface. However this is not an easy
task due to the procedures and fixtures needed in the
process. In this work, we develop a method to ver-
ify the stereo calibration in situ using associated stereo
pixels produced by a line striping laser. We also show
the sensitivity of the pixel associations to the estimated
measurements in simulation.

1 INTRODUCTION

Bell,et.al., [3] detail the meticulous effort taken to cal-
ibrate the sensors both pre-flight and in-flight. These
include characterizing the sensors for different envi-
ronmental changes, as the calibration done for one en-
vironment may not hold for another. Various factors
like vibration during launch, structural stress during
landing, thermal expansion during operation can con-
tribute to this issue. Therefore it becomes essential to
develop procedures to enable calibration in the field.
To calibrate stereo extrinsic parameters an object with
known precise dimensions can be used. This could
be the lander itself or any other payload on the lan-
der. This becomes challenging if the stereo cameras
are not articulated, as is the case for micro-rovers, and
not facing the lander, as is the case for navigation cam-
eras. For these new breed of micro-rovers designed to
operate for brief mission, a few earth days time is an-
other concern. A real-time calibration solution is pre-
ferred. We propose a calibration procedure which es-
timates the stereo extrinsic parameters in real-time in
situ. We propose using laser line stripers to solve this

Figure 1: Artistic rendering of MoonRanger

problem. A laser line striper is a laser diode with a
Powell lens[4] which projects a light plane. The light
plane intersects with the ground surface and produces
lines of points which are observed by cameras. Laser
line stripers were used by Sojourner rover [3] for ob-
stacle avoidance and have space heritage.

We use a light plane to verify calibration which is sim-
ilar to the traditional checkerboard method. When a
checkerboard is used for calibration, the planar nature
of the checkerboard is exploited to solve for the cam-
era intrinsic parameters[2]. The same idea can be ex-
tended for the light plane. The major difference is: in
the checkerboard method the position of the corners
is known precisely. However using the light plane the
corners are not known as no assumptions about the ter-
rain can be made.

In this paper we look into aspects involved in using
the line striping laser to verify the calibration of stereo
cameras. It includes sensitivity analysis to quantify our
results. We perform these experiments in simulation as

• we can obtain absolute ground truth to quantify
our results

• simulation is unaffected by the accuracy of the
pixel extraction or association algorithms which
operate on image domain

• experiments are repeatable

We do recognize the importance and difficulty in eval-
uating real data. The efficiency of extraction and as-
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Figure 2: Prototype rover with laser strips and stereo
cameras

sociation of the pixels in real data is a hard prob-
lem which needs separate investigation. However that
should not impede understanding the efficacy of using
line striping for verifying calibration.

There are two main contributions in this paper.

• Formulated a procedure to verify stereo calibra-
tion using pixel associations from a line striping
laser

• Conducted sensitivity analysis experiments to
study how changes in pixel error contributes to
the estimated poses.

This technology is enabling for autonomous micro-
rover exploration. It will be integral to the Moon-
Ranger rover [Figure 1 and 2] which has been selected
as a Lunar Surface Instrument and Technology Pay-
load (LSITP). It will fly aboard the Masten XL-1 lan-
der on a Commercial Lunar Payload Services (CLPS)
mission to the pole of the moon in December 2022.

2 PROBLEM FORMULATION

Given: A stereo camera setup and a line striping laser.
The cameras are pre-calibrated and the intrinsic and
the extrinsic parameters are known. The intrinsics in-
volve the camera matrix K and the distortion parame-
ters D . The extrinsics involve the position of the cam-
eras in some known world frame. The line striping
laser is also calibrated and the laser plane is known in
same world frame. The line strip is be observed on
both the camera images. We have a reliable algorithm
to extract the line striping points on both the images
and associate the corresponding pixels.

Problem: Verify if the camera pose has changed with
respect to prior calibration?

Formulation: Let the two cameras be c1 and c2. The
intrinsic matrices of the cameras Kc1 and Kc2 are given
by

Kci =

 fx 0 cx
0 fy cy
0 0 1


where fx and fy are the focal lengths and cx and cy are
the camera centers in pixel coordinates. If Rc1 ,Rc2 and
Tc1 ,Tc2 denote the rotation and translation components
of the two cameras in an fixed world frame, then the
projection of a 3D point in the world frame is given by

uc1
vc1
1

= Kc1 [Rc1 |Tc1 ]


X
Y
Z
1

 (1)

uc2
vc2
1

= Kc2 [Rc2 |Tc2 ]


X
Y
Z
1

 (2)

where [uc1 ,vc1 ]
T are the pixel locations of 3D point[

X Y Z
]T for camera c1.

Let the laser plane be represented using the parame-
ters a,b,c,d . If the point

[
X Y Z

]T passes
through the plane then it satisfies the equation,

aX +bY + cZ +d = 0

So formally, given pixel correspondences[
ui

c1
,vi

c1

]T ⇔ [
ui

c2
,vi

c2

]T between images from
both the cameras, can we verify that [Rc2 |Tc2 ] has not
changed.

3 METHOD

The first step is to estimate the 3D position of the pix-
els on both the images. This can be done using a ray
tracing algorithm[5]. The ray tracing algorithm works
by projecting a ray emanating from the camera center
going through the pixel coordinate to the world. The
point of intersection of this ray to the laser plane gives
the 3D position of the pixel. Using the estimated 3D
points from one camera and the pixel locations from
the other camera, we can use the Perspective-n-Point
algorithm[6], to estimate the position of the other cam-
era with respect to the first camera. Alternatively we
propose a different method where we estimate the 3D
position of the pixels from the other camera and then
formulate an optimization process which estimates the
camera pose using the differences in the 3D positions.
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In the experiments section we will show the perfor-
mance differences between these two methods.

3.1 Ray Tracing

Ray Tracing is a process of projecting a ray from the
camera center through the pixel to the world. Let us
consider the pixel coordinate

[
ui

c1
vi

c1

]
. The super script

i refers to the ith pixel in the correspondence pairs. To
create the ray, we need two points. The starting point
is the camera center, which in the camera frame, is all
zeros.

Sc1 =
[
sc1

x sc1
y sc1

z
]T

=
[
0 0 0

]T
The ending point is obtained from the pixel coordinate
which is first normalized and then transformed to the
world coordinate.

Ec1 =
[
ec1

x ec1
y ec1

z
]T

=
[

ui
c1
−cx

fx

vi
c1
−cy

fy
1
]T

The transform which transforms the points in the cam-
era frame to the world frame, in the homogeneous
form, is given by,

Hw
c1
=

[
Rc1 Tc1
0 1

]
The start and the end points of the ray in the world
frame is given by,

Sw = Hw
c1

Sc1 =
[
sw

x sw
y sw

z
]T

Ew = Hw
c1

Ec1 =
[
ew

x ew
y ew

z
]T

Using the start and the end points of the ray we form a
vector,

V w =
[
vw

x vw
y vw

z
]T

= Ew−Sw

The 3D position of the pixels is given by the intersec-
tion of the vector and the starting point to the laser
plane described using the parameters [a,b,c,d].

Iw
3×1 =

[
tsw

x vw
x tsw

y vw
y tsw

z vw
z
]T

where,

t =−
(asw

x +bsw
y + csw

z +d)
avw

x +bvw
y + cvw

z

3.2 Perspective-n-Point (PnP)

Given a set of 3D points in the world frame and their
projection (pixel coordinates) on the camera frame,
PnP algorithm estimates the position and rotation (6

degrees of freedom pose) of the camera with respect to
the 3D points.

We start with the camera projection equation (2) and
use one of the properties of cross product to solve. The
cross product defined between two 3D vectors given
by,

~a×~b = [a]×~b =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 b1
b2
b3


The cross product of a vector with itself is zero,

~a×~a = 0

Start from the projection equation 2:

u
v
1

= αP


X
Y
Z
1


where P = K[R|t] is the projection matrix of dimen-
sion 3× 4. Note, we introduce α which accounts for
the fact the the projection matrix is up-to scale. The
subscript c2 is dropped for brevity. P

[
X Y Z 1

]T
is a 3×1 vector, called M

u
v
1

= αM

Take a cross product of M on both sides,

u
v
1

×M = αM×M = 0

Using the property of cross product, M×M = 0

Note, P is not a square matrix. So it does not have an
inverse.

Replacing M,

u
v
1

×M =

u
v
1

×P


X
Y
Z
1

= 0

 0 −1 v
1 0 −u
−v u 0

P


X
Y
Z
1

= 0
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Expanding P,

 0 −1 v
1 0 −u
−v u 0

P11 P12 P13 P14
P21 P22 P23 P24
P31 P32 P33 P34




X
Y
Z
1

= 0

 0 −1 v
1 0 −u
−v u 0

P11X +P12Y +P13Z +P14
P21X +P22Y +P23Z +P24
P31X +P32Y +P33Z +P34

= 0

Rearranging and pulling out the Pi j entries to a vector,
we get 12 unknowns. Each pixel point gives two values
u and v. So we need at least 6 points to solve for P.
However in practice we will use a lot more points to
account for the inaccuracies in the pixel locations and
solve using the least squares approach.

This is of the form Ax = 0 and can be solved by
taking the singular value decomposition (SVD) of A.
svd(A) =UDV T and x = last column o f V

We know P = K[R|t], since we already know K and we
just calculated P from SVD, we can get [R|t]

[R|t] = K−1P = Pn
3x4

Pn is 3×4. The first three columns of Pn corresponds
to R and the last column corresponds to t but we can-
not assign it directly as R is a rotation matrix and the
columns need to be orthogonal. Hence we use SVD
again to extract the orthogonal components.

svd(Pc1:c3) =UDV T =⇒ R =UV T

The diagonal matrix D has the eigen values of the form
D = diag(α1,α2,α3). The translation component t is
given by dividing the last column of Pn by the first
eigen value:

t =
Pn

c4
α1

3.3 Depth difference algorithm

As an alternative to PnP, we can use the differences
in depth to calculate the position of the cameras. To
do this, we use the ray tracing algorithm described
in section 3.1 to find the 3D positions of the points
from both the cameras. Let Pw

c1
=
[
pw

x pw
y pw

z
]T and

Qw
c2
=
[
qw

x qw
y qw

z
]T be set of 3D points from the pixel

associations from both the camera images c1 and c2
respectively.

Figure 3: Simulation with stereo cameras and a line
striper with varying size blocks

We setup an optimization that minimises the pose of
c2

argmin
Rtc2

∑

√
(pw

x +qw
x )

2 +(pw
y +qw

y )
2 +(pw

z +qw
z )

2

Here Rtc2 is a 6 vector with 3 translation components
and three rotation components in compressed axis-
angle representation[7]. This is a non-linear optimiza-
tion problem as it involves rotation components. We
tested the Levenberg-Marquardt[8] optimization algo-
rithm but switched to the Trust Region Reflective[9]
algorithm which exhibited better converge.

4 EXPERIMENTS

As mentioned, all experiments are conducted in sim-
ulation. Detecting the line strip from the image de-
pends on factors including the terrain’s reflectivity, in-
tensity of the laser and robustness of the detection al-
gorithm. We did not want these parameters to influ-
ence our analysis. Also, simulation provides accurate
ground truth for rigorous quantitative analysis.

4.1 Setup

The setup involves stereo cameras with 90◦ horizontal
field of view and an aspect ratio of 1.3. We changed
baselines between experiments. A laser line striper
simulating a minimum of 200 rays is added is then
projected to the floor to form the line stripes. We also
added blocks of varying sizes and positions depend-
ing on what the experiment demanded. We were able
to precisely move and control the position of the each
of these components during our experiments. We de-
veloped 1 a tool which helps experimenting with the
perception system for this purpose. Figure 3 shows a
view of the simulation setup. After we setup the cam-
eras, lasers and blocks, we extracted the point of in-
tersection of the laser line to the ground plane and the

1www.merrysprout.com/tools/perception design/

5066.pdfi-SAIRAS2020-Papers (2020)



blocks directly from the simulator. We then re-project
these points to the camera frame using the projection
equations 1 and 2. This gives a accurate value for the
pixel locations.

4.2 Pixel Sensitivity

We evaluated the sensitivity of the estimation algo-
rithm by adding Gaussian noise to the pixel locations.
We started from a low standard deviation of 0.01 and
to increased it up to 5. In the real world example, it
is nominal to expect a deviation of 0.1 to 2 pixels.
But it is unlikely that the error model will be Gaus-
sian. We chose Gaussian error for simplicity. Due to
the stochastic nature of the noise, we ran multiple iter-
ations of the same experiment and generated box plots
to show the tread. Figure 4 shows the results of this
experiment. The pose error is calculated by finding
the norm of the difference between the estimate pose
and the ground truth pose. For this analysis we did not
consider the error in the estimated angle.

4.3 PnP vs Depth-difference

The second experiment compares the performance of
the PnP method with the Depth-difference method. In
this experiment we started with the true pixel locations
and increased the standard deviation of the Gaussian
noise for different runs. The experiment were run mul-
tiple times for each noise setting and the results were
aggregated. We also experimented the different orien-
tations of the laser line striper. We calculated the pose
error using the same method described in section 4.2.

5 RESULTS

5.1 Pixel Sensitivity

Figure 4 shows the error in the estimated position of
the PnP algorithm for different amount of Gaussian
noise added to the pixel location. The error in the es-
timated pose is well below half a centimeter for pixels
with noise of one standard deviation. The error in the
estimated pose grows exponentially as the pixel noise
increases. So, as long as we can keep the pixel noises
to below one standard deviation, we should be able to
predict the pose of the other camera to within half a
centimeter accuracy.

5.2 PnP vs Depth-difference

Figure 5 and figure 6 show the error of the estimated
pose using the depth-difference algorithm and the PnP
algorithm. As we can see that the standard deviation
of the Gaussian noise added to the pixel locations in-
crease from 0 to 0.3. The error of the estimated pose is
shown along the Y axis.

Figure 4: Box plot showing the error in the estimated
pose of the PnP algorithm for varying level added
Gaussian pixel noise

Figure 5 shows the comparison between the depth-
difference method and the PnP method for a line strip-
ing laser which shines a vertical plane perpendicular
to the ground plane. This casts a vertical line in both
the images. Figure 3 shows a similar scenario. The
two plots show the error of the estimated pose using
these methods. Both these methods start with low er-
ror in the estimated pose but the error quickly increases
as the as more noise is added to the pixel locations.
Notice the scale of error in both the plots. The PnP
method seems to be much more resilient to pixel noise
and scales linearly compared to the depth-difference
method which relies seems to scale exponentially. One
possible explanation is, we used the PnP algorithm in
OpenCV [10] which includes the RANSAC[11] algo-
rithm for outlier removal. This makes the PnP method
robust. The depth-difference method could be robus-
tified using Bisquare weight [12] before feeding the
residuals to the optimization algorithm.

Figure 6 shows the comparison for a horizontal laser.
Note the change in scale of the error between the two
plots. The error for the depth-difference method starts
in the order of millimeters for low pixel noise but
quickly climbs up to over a 1cm for a relatively low
noise of 0.3 standard deviation. However, the error re-
ported by the PnP algorithm stays very high. It is likely
that the PnP algorithm runs into a singularity case at
this angle. We also ran other experiments setting the
laser at different angles2. We found that the PnP al-
gorithm is robust for most of the angle differences and
starts to accumulate errors when the laser plane is close
to horizontal.

2we did not include those graphs for brevity
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Figure 5: For a vertical line striping laser, comparing the error of the estimated poses using the depth-difference and
the PnP method. The PnP method performs with significantly lower error.

Figure 6: For a horizontal line striping laser, comparing the error of the estimated poses using the depth-difference
and the PnP method. The depth-difference method performs better.

6 CONCLUSION

We proposed a method to verify stereo extrinsic us-
ing point correspondences from a line striping laser.
We compared the widely used PnP algorithm with
our depth-difference algorithm. We also showed how
pixel noise affects the estimated camera poses. Future
work should focus on considering the error in the esti-
mated angles along with the positions as they will have
much greater impact. We modelled the pixel noises are
Gaussian distributions in our simulation for simplicity.
However in real world this is not true. These should be
modelled using more realistic error distributions. We

did not address the association problem. That is, how
a pixel in one image is associated with the correspond-
ing pixel in the next image usually by feature matching
techniques like SIFT, SURF or ORB. Recently, deep
learning techniques are also used to get better results.
Data association for laser striping will be investigated.
Finally, we need to test and validate these findings on
real data.
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