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ABSTRACT 

Early Lunar micro-rover missions will be short in du-
ration and have constrained downlink capacity. To 
maximize the scientific return of these missions, Mis-
sion Control is developing technologies to autono-
mously classify geological features and detect novel 
features in rover camera imagery, which can be used 
to support intelligent decision-making for prioritizing 
data for downlink and instrument targeting. In a re-
cently completed concept study, a trade-off analysis 
and performance evaluation were conducted for the 
terrain classifier and novelty detector algorithms 
across multiple datasets. The terrain classifier devel-
oped achieved accuracies of 77%-86% and Intersec-
tion over Union (IoU) scores of 0.667-0.680 across 10 
different terrain type, on 3 distinct data sets (totalling 
928 images), demonstrating the robustness of the ap-
proach to varying illumination conditions. In ongoing 
work, a comprehensive Lunar analogue dataset is be-
ing developed to continue prototyping, and the algo-
rithms are being developed on an embedded processor 
for a flight demonstration opportunity. 

1 INTRODUCTION 

In this section, we begin with highlighting the chal-
lenges facing Lunar rover operations and the motiva-
tions for including technologies that enable autono-
mous perception and decision-making. In Section 2, 
we explain intended onboard and offboard use cases 
and User Experience (UX) considerations for how im-
age annotations that are autonomously created by the 
terrain classifier can be used in a Lunar rover opera-
tions tactical cycle. In Section 3, we provide an over-
view of technologies with recent results from trade-off 
analysis of the terrain classifier on datasets. In Section 
4, we highlight open challenges and next steps.  

1.1 Challenges in Commercial Lunar Missions 

Between the harsh Lunar environment and economic 
pressures on companies, early Lunar surface missions 
will be limited to a Lunar day (14 Earth days). and 

nominal operations at mid/low latitudes will likely be 
10-12 Earth days. Payloads must also share a con-
strained downlink capacity. Payload operators gener-
ating high volumes of data face the problem of not re-
ceiving data in a timely fashion to influence their op-
erations or worse, leaving valuable data on the Moon. 
These constraints are motivating the need for innova-
tive concept of operations and technologies to ensure 
customer satisfaction, and the viability of this new 
model of exploration. 

1.2 Mobility and Science Operations 

Several factors are driving the need for autonomy in 
mobile science operations. In traditional Mars rover 
operations, visual surface characterization and subse-
quent analysis and decision-making takes place in day-
long tactical cycles [1]. Upcoming Lunar rover mis-
sions, however, will have reduced latency, short life-
times, and constrained bandwidth. This will result in a 
need for rapid tactical decision-making processes with 
limited data, leaving little time to analyze data, iden-
tify features of interest, and make decisions. 

The highly anticipated NASA VIPER rover that will 
fly to the south polar region is a large rover (~300kg) 
but will have a constrained direct-to-Earth communi-
cations channel of 230 kbps [2]. Small-scale commer-
cial Lunar rovers will also be constrained; a 10 kg 
rover deployed in Astrobotic’s Mission One will be al-
located 200 kbps according to standard payload data 
rate allocation advertised in their Payload User Guide 
(PUG) [3]. As per their CubeRover PUG, a 6kg pay-
load will be allocated 60 kbps [4]. 

Sensing capabilities are growing increasingly power-
ful but data transfer rates are not sufficiently high to 
downlink high volume data in short decision-making 
timescales. To maximize scientific return, it will be 
important to have methods to intelligently compress or 
select data to downlink in real-time or to select key ge-
ological features to measure. 
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The nature of scientific discovery makes onboard au-
tonomy compelling. It increases the chances of detect-
ing valuable novel/sparse features that may otherwise 
be missed in scenarios that prioritize driving and other 
mission needs. For example, NASA’s Opportunity 
rover was driven 600 ft past the Block Island meteor-
ite, one of its biggest discoveries, before the science 
team discovered it and decided to drive back to inves-
tigate it [5]. 

With tactical cycles a few minutes long and pressure 
to achieve science objectives, missions will benefit 
from autonomy in data processing and decision-mak-
ing. The ASAS-CRATERS (Autonomous Soil Assess-
ment System: Contextualizing Rocks, Anomalies and 
Terrains in Exploratory Robotic Science) system de-
veloped by Mission Control offers such capabilities, 
with the goal of maximizing scientific return in up-
coming missions [6]. 

1.3 State of the Art in Autonomous Perception 

In a previous paper [7], we offered a detailed survey 
of modern perception and modeling technologies for 
planetary surface robotics. The state-of-the-art in ter-
rain classification leverages high performance Convo-
lutional Neural Networks (CNNs) that find natural fea-
tures and complex patterns in the image. 

For example, Soil Property and Object Classification 
(SPOC) [8] has a terrain classifier that uses Fully 
CNNs (FCNNs).  Gonzalez and Iagnemma [9] re-
cently published a comparative analysis of CNNs, 
Deep Neural Networks, and classical algorithms such 
as Support Vector Machines. These and other works 
have focused on classifying Mars surface images to 
improve autonomy for Mars rovers. 

For Lunar applications, terrain classification moti-
vated by scientific research has focused on crater de-
tection using orbital data. Stepinski et al. and Chung et 
al. offer a review of traditional machine learning tech-
niques, including SVMs [10], [11]. More recently, Sil-
burt et al. [12] explored the use of CNNs to detect cra-
ters using a DEM merged from LRO and Kaguya data. 

While these studies have successfully demonstrated 
the use of deep learning to improve terrain classifica-
tion of images from Mars rover datasets or from a la-
boratory setting, only recent work by Mission Control 
has holistically studied terrain classification in a real-
time system for a science-driven rover mission and its 
implications on mission operations [13]. Additional 
work, as presented in this paper, has demonstrated the 
use of this technology on Lunar datasets. 

The Mission Control terrain classifier was first devel-
oped under the CSA-funded Autonomous Soil Assess-
ment System [14]. In 2019, it was used onboard a rover 
to classify eight Mars-relevant terrain types in real-
time at ~15 FPS as the rover drove at 20cm/s at a high-
fidelity analogue site in Iceland (see Figure 1). This 
was a part of SAND-E (Semi-Autonomous Navigation 
for Detrital Environments), a NASA PSTAR funded 
project to inform Mars2020 operations [13]. 

   
Figure 1: Result from field-testing the deep-learning 
based terrain classifier in Iceland. 
 

Recent work by Kerner et al. [15], [16] have demon-
strated the capability to detect novel geological fea-
tures in multispectral images of the Martian surface. 
They show that a spatial-spectral error map can enable 
both accurate classification of novelty in multispectral 
images as well as human-comprehensible explanations 
of the detection.  

2 USE CASES AND USER EXPERIENCE IN 
LUNAR ROVER OPERATIONS  

In this section, we focus on the use cases of the per-
ception algorithms (terrain classification and novelty 
detection) in onboard applications to enable autono-
mous behaviour to benefit science and navigation 
alike, and offboard applications to support science 
backroom tasks. 

2.1 Onboard Applications 

In Lunar rover operations, we expect two types of data 
collection modes for onboard science instruments, in 
particular those that are scanning the surface: 

Continuous Mode: The instrument is set to capture 
data at a set time or distance-based rate. This mode is 
relevant during scouting operations or driving between 
destinations. Instrument measurements are desired at 
whatever rate is feasible to downlink given other pay-
load and telemetry allocation.  

We assume a stronger constraint on downlink capacity 
than on available power for data capture, i.e. more data 
can be captured and stored onboard than is possible to 
downlink in real-time. In this case, we must maximize 
the scientific value of this data. 
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Targeted Mode: The instrument is triggered to capture 
data at specific instances due to higher power con-
straint that does not make continuous measurements 
feasible. It is desired to target the instrument to scan 
specific and high-priority features of interest. 

In both modes, autonomous perception can support 
onboard decision-making, i.e. intelligent downlink of 
continuous data in the first mode, or intelligent target-
ing of the instrument in the second mode. 

With a semantic understanding of the nearby terrain, 
and using science operator defined rules, the onboard 
system can decide whether the instrument data is suit-
able for immediate downlink. Similar to the AEGIS 
system pioneered for Mars rovers [17], we intend to 
use strategies such as key target signatures, novelty de-
tection, and representative sampling. 

Additionally, as a semantically useful terrain represen-
tation, the terrain classifier outputs can be used by path 
planning algorithms to enable autonomous and intelli-
gent navigation to scientific targets of interest. 

2.2 Offboard Use Cases 

Consider a driving scenario where the rover is driven 
to a prioritized destination without planned science 
stops. The science backroom team is tasked to contin-
uously monitor camera feed to assess the terrain for 
any high-priority feature that are worth a short stop 
and quick inspection, e.g. a high-resolution image or 
instrument scan. NavCam images are compressed and 
downlinked at about 1Hz, and so the image quality is 
not optimal for scientific terrain assessment. 

Consider the following mission parameters. The rover 
is driving at 8 cm/s with navigation stops every 5m. 
From the time a particular image is taken, the call to 
stop the rover to analyze a feature must be done before 
the rover drives 3m ahead such that that feature is still 
within a reasonable range; this translates to 37.5 sec-
onds later if the rover is driving continuously during 
those 3m. Accounting for system latency and data pro-
cessing time, the science team has approximately 30s 
to look at the image and: i) decide to annotate a partic-
ular feature, ii) annotate it, and iii) communicate it to 
the rover operations team. 

While numbers may change, this mission scenario is 
expected to be common for early commercial Lunar 
micro-rover operations, and as such, autonomous and 
intelligent image annotation can greatly assist in the 
process of scientific terrain assessment in these rapid 
tactical cycles. The following is a summary of benefits 
with autonomously annotating features in real-time:  

• Efficient evaluation and selection of a feature to re-
quest a navigation stop or instrument targeting, fol-
lowed by communication of the request internally 
within the operations team. 

• Features can be catalogued in a database, enabling 
feature-based query in real-time which can be 
highly beneficial in short-duration missions. E.g., 
an operator can quickly retrieve all fresh craters of 
size 3-4m in a specific geographic area. 

• Features can be projected on a map frame, and 
map-based data products can be easily integrated 
into GIS tools for rapid analysis with the context of 
scale and other information layers derived in situ 
or from orbit. 

The rapid classification and cataloguing of Lunar sur-
face features supports analyses, e.g. crater counting 
and size-frequency distribution estimation. This can 
help scientists to inform their models and hypotheses 
that might guide decisions within the 10-12 Earth day 
mission timeframe. 

To test these hypotheses on UX design, we will work 
with Lunar scientists with an interest in operations and 
conduct field tests, followed by working with opera-
tions personnel on targeted flight demonstrations. 

3 OVERVIEW OF TECHNOLOGIES AND 
EARLY RESULTS 

3.1 Terrain Classification 

The terrain classifier uses a CNN in an encoder-de-
coder architecture to perform semantic segmentation. 
In the recently completed ASAS-CRATERS concept 
study, a detailed trade-off analysis and performance 
evaluation was conducted for the terrain classifier, us-
ing three datasets (see the figure below for example 
images): two pre-existing labeled datasets, one from 
the CSA-MET (Canadian Space Agency Mars Emula-
tion Terrain), and one from Iceland as part of the 2019 
SAND-E field test campaign. The third dataset was 
compiled and labeled during the ASAS-CRATERS 
concept study; it consists of images from the Chang’E-
3 Yutu-1 PCAM (Panoramic Camera) and the 
Chang’E-4 lander-based TCAM (Terrain Camera). 
Table 1 highlights the simple classification scheme 
used for early prototyping. 

Figure 2: Left to right: Images from the Chang’E, 
CSA-MET, and SAND-E datasets. 
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Table 1: Simple Lunar terrain classification scheme 
defined for early trade-off analysis and prototyping 

Sky Black region on top of the image 
Crater Any distinct crater 
Boulder Any distinct rock 
Crater Field Groups of craters 
Rock Field Cluster of rocks, ejecta, etc. 
Regolith Regolith interspaced between rocks 
Hills Visible in the background 

 

To choose an architecture for the terrain classifier, a 
trade-off analysis was completed, comparing the per-
formance of five different encoder-decoder architec-
tures. Two are variations of DeepLabV3+ [18], one of 
which uses a truncated pre-trained MobileNetV2 
model as the feature extractor in the encoder module 
and the other uses a truncated pre-trained Xception 
model. The remaining three architectures, which we 
refer to as SmallNet, TinyNet and MiniNet, are novel 
encoder-decoder architectures of three sizes. All three 
are relatively small compared to most state-of-the-art 
CNNs for semantic segmentation; they use a truncated 
pre-trained MobileNetV2 as the encoder module and a 
novel decoder module. All five architectures use 
ImageNet as the pre-training dataset.  

The five architectures were tested on the CSA-MET 
and SAND-E datasets at three different input sizes: 
96x96, 128x128 and 224x224, all downsized from the 
original images. The input size affects classifier accu-
racy, resolution, and memory and downlink require-
ments. The tests were done with GPU implementa-
tions of the CNNs. The top two architectures on the 
CSA-MET and SAND-E datasets (DeepLabV3+-Mo-
bileNetV2 and DeepLabV3+-Xception) were selected 
for evaluation on the Chang’E dataset (see figures be-
low for results). With the 224x224 input, they 
achieved accuracies of 75.5% and 76.9%, and mean 
IOU of 66.3% and 66.5%.   

 
Figure 3: Two Chang’E image examples classified us-
ing DeepLabV3+-MobileNetV2. The black mask indi-
cating the rover shadow was not used in classification. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Confusion matrix for the Chang’E dataset, 
using DeepLabV3+-MobileNetV2 with an 224x224 in-
put size image. 

The loss function to minimize during training has a 
significant impact on the network’s performance. We 
trained the CNNs on two datasets using the standard 
crossentropy (CE), weighted CE, focal CE [19], dice 
loss, focal dice loss, a combination of dice loss and CE 
(referred to as combo loss), tversky loss (also called 
generalized dice loss), focal tversky loss and Lovasz-
softmax loss. We then selected the top four functions 
from testing on the CSA-MET and SAND-E datasets: 
CE, weighted CE, combo loss (CE+Dice) and focal 
CE. In our study the best performing loss, with both 
the highest accuracy and mean IoU, was the focal CE. 
The following table and figure show some results of 
the loss function trade-off analysis. 

Table 2: Loss Function analysis on the SAND-E da-
taset using DeepLabV3+-MobileNetV2 

Loss Function Accuracy Mean IOU 
CE 75.3% 62.6% 
Weighted CE 67.5% 50.9% 
CE+Dice 68.4% 55% 
Focal CE 76.1% 65.2% 

 
 

Figure 5: An image from SAND-E classified by 
DeepLabV3+-MobileNetV2 with four loss functions. 
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3.2 Novelty Detection 

The purpose of the novelty detection algorithm is two-
fold: 1) to detect known geological features that are 
rare to find and have limited data for training, and 2) 
to detect anomalous features that are not consistent 
with typical surface features as defined in a curated 
training dataset. 

For unknown novelties, the novelty detection algo-
rithm is implemented using semi-supervised deep 
learning methods consisting of a convolutional auto-
encoder for input reconstruction and a binary classifi-
cation network for identifying novel data. A convolu-
tional autoencoder is used to generate error maps that 
are then fed to a classification network determines the 
input to novel or typical.  

Figure 6: Left: A ‘low-erosion’ rock flagged as anom-
alous by the Yutu-2 operations team. Right: Outcrop 
of bedrock seen by Apollo 15 astronauts. 

For known novelties, i.e. those that are well-docu-
mented or well-described but occur rarely or are outli-
ers in the given setting, we may also consider a super-
vised learning approach with limited training data, 
typically referred to as one-shot (or few-shot) learning 
approaches. Examples of novelties that could be de-
tected using this approach include mantle xenoliths in 
basalt, outcrops of bedrock, meteorites, secondary cra-
ters, and pyroclastic material with colouration. 

To evaluate the semi-supervised novelty detection ap-
proaches using convolutional autoencoder architec-
tures (developed by Kerner et al.), two datasets were 
studied: the Chang’E dataset labeled with ‘novel’ fea-
tures during the ASAS-CRATERS concept study (see 
Figure 7), and an additional dataset of Mars images 
from MSL made publicly available by Kerner et al 
[16]. A parallel paper at this conference by Stefanuk et 
al. includes detailed results on the work done to eval-
uate the novelty detector approaches on both datasets. 

Due to the limitations of the Lunar dataset and the def-
initions of novel features, we discovered several chal-
lenges with evaluating the semi-supervised approach 
on the Lunar dataset. Challenges and next steps are 
discussed in Section 4. 

Figure 7: Example novel features labeled in the 
Chang’E dataset. 

3.3 Feature Mapping 

A feature mapping system can aggregate classifier re-
sults on map tiles. This is useable by onboard algo-
rithms for instrument targeting and navigation, and of-
fers easy integration into GIS tools for analysis with 
geospatial context and other mission data. Figure 8 
shows a concept diagram of this mapping. 

 

Figure 8: Illustration of aggregating outputs from the 
terrain classifier onto map tiles. 

The terrain classifier and novelty detector provide out-
puts in the image coordinate frame. A set of algorithms 
can then project these results onto a map frame and 
aggregate them onto a uniform map-tile data product, 
similar to an occupancy grid used in rover navigation. 
This has several benefits. 

First, it acts as an ensemble method to improve classi-
fier accuracy and eliminates contradictory feature out-
puts in overlapping classified images. Multiple classi-
fication instances of a specific feature at a spatial point 
can ‘smooth out’ the single-instance outputs of the ter-
rain classifier and improve classification accuracy. 

Second, it better supports scientific analysis. Map tiles 
more readily offer geospatial context of the classified 
features and can be more easily integrated into GIS 
tools and overlaid on data from multiple sources as 
there is conformity in the same reference frame.  

Third, the map tiles can be used for science and navi-
gation autonomy, e.g. autonomous instrument target-
ing and path planning. 

To enable the mapping, the system would require a 
source of relative localization and a depth image that 
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is co-registered with the classified frame. A stereo-
processing pipeline can generate this information but 
requires additional onboard software which adds com-
plexity and increases computation. While it is desired 
to implement this as part of the onboard flight suite for 
a future mission, a contingency option is to implement 
this as part of the ground segment data processing 
suite. On the ground, the map tiles can be geo-tagged 
with available global localization data, along with 
other derived data products. 

3.4 Feature Prioritization for Intelligent Downlink 
or Targeting 

Once an onboard system can infer some knowledge of 
the surrounding terrain’s geological features, it can 
also be programmed with some decision-making capa-
bilities. Inspired from methods used in Mars rover 
missions [17], we define some methods to leverage the 
outputs of the terrain classifier and novelty detector to 
inform intelligent prioritization for data downlink or 
instrument targeting: 

1) Novel features as identified by a semi-supervised 
detector, or a supervised detector for known but rare 
features. 

2) Representative sampling: Features which contribute 
to build a representative sample of specific features 
and characteristics, identified using the classes present 
in the terrain classifier output and the expected distri-
bution of classes in the region. For example, the sci-
ence team may want measurements of instrument data 
taken of an equal number of ‘small’, ‘medium’, and 
‘large’ craters (relative size), or an equal number of 
‘fresh’, ‘semi-degraded’, or ‘ghost’ craters. 

3) High-priority classes, such as a fresh crater or rocks 
of a specific type. Depending on which classes are de-
fined for model training, this functionality could in-
clude prioritizing images containing rocks of high/low 
albedo or angularity. 

Scientific data itself (e.g. from a neutron spectrometer 
or multi-spectral imager) can also be analyzed for 
novel or high-priority feature detection. 

3.5 High-Performance COTS Processors 

We have completed a preliminary feasibility assess-
ment for and are prototyping algorithms for develop-
ment on high-performance processors by Xiphos 
Technologies. Primarily, we consider the Q8S, which 
is a compact, low-cost, high-performance, COTS, and 
flight-qualified processor that is suitable for computa-
tionally intensive algorithms for planetary science and 
robotics missions. The Q8S is 90g, 4-25W, and 
85.8x80x22.6mm. At the core of the Q8S is a high-

performance, low power Xilinx Zynq Ultrascale+ 
Multiprocessor System-on-Chip (MPSoC) FPGA, 
which enables high-performance parallel computing.  

Using off-the-shelf components will lower costs for 
development and enable commercialization. For more 
physically and power constrained platforms, we also 
consider the Xiphos Q7S (24g, 1W, and 78x43x9mm). 

In the ASAS-CRATERS concept study, the algorithm 
performance was evaluated on the Q7S and Q8S. We 
tested the DeepLabV3-MobileNetV2 architecture at 
the 224x224 input size directly on the ZCU102 board 
with the Xilinx Vitis-AI toolkit which achieves a DPU 
processing time of 0.004s (250 Hz) with additional 
post processing time of 0.024s.  In total, the end to end 
throughput for this mode was ~35 Hz. This could be 
improved dramatically by moving the final softmax 
layer from the CPU to the FPGA. The high throughput 
and low latency of this profiling analysis demonstrates 
feasibility on a flight-qualified processor. 

A preliminary radiation assessment has also been com-
pleted for the Q8S. Requirements were identified 
through radiation modelling; a maximum Total Ioniz-
ing Dose (TID) of 6 krad was determined to be the 
worst-case dosage of a Lunar mission, assuming nom-
inal shielding thickness provided by the lander and 
rover during transit and surface operations. Low Dose 
Rate (LDR) Radiation testing of the Q8S platform has 
been conducted under biased and unbiased EQM to 30 
krad total dose. The Q8S remained fully operational 
until 20 krad with a Low Dropout Regulator failure at 
20krad. Single Event Effects (SEE) Proton Testing 
performed at TRIUMF 105 MeV where 4 different 
tests were completed to 1010 total fluence with flux 
ranging from 106 to 107 protons/sec. No destructive 
latch-up events were detected during proton testing 

This initial testing indicates that the Q8S is suitable for 
a Lunar mission. 

4 DISCUSSION 

4.1 Open Challenges 

Autonomous Lunar terrain classification is a challeng-
ing endeavor. A balance must be achieved between 
performance, fidelity of the classification scheme to 
detect increasingly complexity, and the constraints of 
deep space computing systems and architectures. 

The quality of the training dataset is a primary factor 
for the performance of any deep learning model. In 
particular, the training dataset quality enforces an up-
per bound on both the quantitative and qualitative per-
formance. Through the lessons learned during early 
prototyping, we have compiled several 
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recommendations for constructing datasets for terrain 
classification using ASAS-CRATERS, and identified 
challenges to address in future development 

The minimally acceptable accuracy and/or mean IoU 
metrics depend on the types of features defined for 
classification. Certain scenarios such as identifying 
macro homogeneous terrain like regolith and rock 
fields may be able to tolerate coarse semantic esti-
mates which could be refined using a simple image 
erosion operation. Other scenarios where fine segmen-
tation of small interspersed craters and rocks may re-
quire more accuracy and higher IoU models to be ef-
fective during the mission operations. We can also im-
prove classification results by removing labels such as 
‘crater field’, which can be assigned as a meta-label in 
post-processing a group of craters that meets a certain 
density threshold is detected. 

For novelty detection, challenges remain in character-
izing the performance of convolutional autoencoders 
in Lunar applications. While examples of features 
have been defined, the ‘novelty’ of a feature is also 
dependent on the context of the landing site, e.g., a 
volcanic feature found at a highland site. Finding 
known novel features such as bedrock outcrop may 
also be better suited for supervised approaches such as 
one-shot learning. Lastly, in many cases, the definition 
of novel features is subjective to the interests and ob-
jectives of specific mission scenarios. 

4.2 Next Steps 

To advance state of the art of terrain classification and 
novelty detection for Lunar surface applications, a 
high quality and comprehensive dataset that represents 
the views from a Lunar rover is required. This should 
cover varying environmental conditions in terms of 
lighting angles and resulting shadows on the terrain, 
the varying types and layouts of terrain and geological 
features, the presence of novel or anomalous terrain 
features, and artificial elements such as the rover’s 
own self, shadows, and wheel tracks. To build such a 
comprehensive dataset, we are currently building a 
controlled Lunar analogue environment where these 
variables can be introduced.  

Once such a dataset is acquired, we will train and val-
idate deep learning models to complete the prototyp-
ing phase of ASAS-CRATERS. In future develop-
ment, we plan to increase the complexity of classifier 
features to improve the classifier capability. This in-
cludes adding attributes to features such as the degra-
dation state of a crater or the tone of the regolith. 

Following the prototyping phase, these technologies 
will be integrated into analogue missions to validate 

their operational hypotheses and use cases. This in-
cludes the SAND-E 2021 field season, which offers an 
opportunity to test the technologies at a high-fidelity 
Moon and Mars natural analogue site in Iceland. 

The terrain classifier is currently at TRL 5 and is un-
dergoing prototyping on a flight-qualified embedded 
processor. A flight demonstration is targeted for mis-
sions in 2022 and 2023. In the first flight demonstra-
tion, the terrain classifier will be embedded onto a 
Xiphos processor integrated on a Lunar lander, while 
the other technologies will be integrated into the 
ground segment to demonstrate the feasibility and us-
ability in a real Lunar mission. 

6 CONCLUSION 

In this paper, we presented results from early prototyp-
ing of the terrain classifier algorithm developed by 
Mission Control for Lunar applications. Based on 
these results, we choose the DeepLabV3+ architecture 
with a truncated pre-trained MobileNetV2 model as 
the feature extractor in the encoder module. The Mo-
bileNetV2 encoder is selected due to its highly effi-
cient design for mobile processors. We introduced the 
targeted flight processors and highlighted key results 
from algorithm profiling and radiation assessment for 
a mission one Lunar day long. 

We also provided a discussion on the problem of nov-
elty detection for Lunar applications. For both percep-
tion technologies, we provided an overview of the ben-
efits and use cases to augment the autonomy of micro-
rover operations. In the flight segment, autonomous 
perception enables intelligent decision-making, such 
as prioritizing data for real-time downlink when sci-
ence instruments are continuously collecting data, and 
prioritizing features for the science instrument to tar-
get when continuous data collection is not feasible. In 
the ground segment, autonomous classification, map-
ping, and cataloguing of features can enable real-time 
analysis and feature-based query. This can help the 
science operations team update models and hypothe-
ses to adapt decision-making processes during the mis-
sion itself, which may be 10-12 Earth days long. 
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