
ABSTRACT 

Some of the most appealing areas for future 

planetary surface exploration lie in rough, uneven 

terrains, such as craters and cold traps, which are 

currently inaccessible by state-of-the-art robotic 

systems [1]. To provide modularity for access and 

in-situ sampling within such extreme environments, 

Jet Propulsion Laboratory (JPL) and California 

Institute of Technology have collaborated to develop 

the DuAxel rover system, a modular robot composed 

of two Axel rappelling vehicles docked to a central 

module into a four-wheeled configuration, suited  for  

driving long distances due to articulated passive-

steering capabilities [2]. Inspired by Carnegie 

Mellon’s Zoë rover [3], a 3D kinematic control 

strategy, leveraging a novel, DuAxel-centric model, 

has been developed to enable precise trajectory 

following over rough, flat terrain with presence of 

obstacles.  

1 INTRODUCTION 

Recent scientific findings suggest potential high-

value science targets including lava tubes on the 

Earth’s Moon [4] and Recurring Slope Lineae 

(RSL) on Mars [5] (Fig. 1). With respect to RSL, 

the potential for water ice at the surface has been 

proposed, which would make for a compelling 

mission in the near future. However, extreme 

terrains still remain difficult to access due to steep 

ground and the increased presence of obstacles. 

From a mission perspective, the DuAxel rover 

system (Fig. 2) is suited to explore extreme terrains 

due to its unique kinematic configuration; its four-

wheeled design allows for reaching a distance point 

from a safe landing location. Upon arrival, one of the 

system's two Axel rovers (which make up the wheels) 

undocks and rappels downslope, while the remaining 

Axel and the central body remain topside to act as an 

anchor and to provide long-range communication 

and energy. As the detached Axel descends into the 

area of interest, receiving power and support from  

Figure 1: RSL on Mars, borrowed from [5]. 

 

Figure 2: The DuAxel four-wheeled rover system. 

the tether, it relays data using on-board sensors to 

take measurements and actuators to collect samples, 

all included in a bay tucked inside the wheels. 

This work focuses on the development of a 3D 

kinematic, passive-steering control strategy with roll 

motion compensation to enhance exact trajectory 

following over flat terrains in presence of obstacles. 
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First, a novel kinematic model is formalized for 

DuAxel, which provides a complete and valid 

mathematical formulation for the kinematics of the 

robot. Then, to address the three-dimensional nature 

of the task, the presented control method extends the 

capabilities of a planar kinematic control integrating 

two additional terms in the control equations, in 

order to compensate roll motion caused by the 

interaction with the obstacles, which directly affects 

the orientation of the rover making it diverge from 

the desired path. Results in both simulation and 

experimental environments show effective 

enhancements in the mobility capabilities over 

obstacles, establishing the viability of DuAxel 

passive-steering locomotion for precise navigation 

from landing sites to the extreme region of interest. 

2 NOVEL 3D KINEMATIC MODEL 

The kinematic model is formalized to provide a 

complete and general mathematical model of the 

kinematics of the DuAxel rover in a 3D space.  

2.1 Model Formulation 

Starting from the theory of parallel robots, the 

rover is considered as a three-dimensional closed-

chain mechanism (Fig. 3). 

 

Figure 3: Coordinate reference frames of the model. 

The main features and assumptions for the analysis 

follow the real DuAxel rover design: 1) there are only 

revolute joints, depicted as cylindrical forms, each 

one allowing a rotational motion around one single 

axis - the wheels are neglected in the model; 2) the 

three joints in the upper left (the same for the upper 

right) represent a unique spherical joint, so they are 

located in the same point even if represented in 

different locations - confusing and overlapped 

representation have been avoided; 3) the colors 

chosen for the frames aim to consolidate the 

symmetry between the two Axel vehicles and 

between the mechanisms behind the motion of each 

side of the rover; 4) each reference frame, from {0} to 

{4} and from {9} to {5}, is chosen according to the 

Denavit-Hartenberg (D-H) convention, but we apply 

it singularly for each Axel - this choice simplifies the 

analysis due to the symmetry of the model; 5) the 

frames {1}, {2}, {3} and {8}, {7}, {6} correspond to 

the yaw, pitch, roll of the rear and front Axel 

respectively. 

2.2 Kinematic Equations 

To solve the kinematics of the parallel mechanism, 

the following steps are performed: 

1. detach the End-Effector (EE) from the system 

operating several ‘cuts’ on the frames {4} and 

{5}; 

2. introduce a local parametrization 𝑥 ∈ 𝑆𝐸(3)  to 

represent the pose of the EE in the global frame 

{0} with a 4x4 homogeneous transformation 

matrix 𝑇0,𝐸(𝑥); 

3. write the transformation matrices, expressed with 

the local parametrization  𝑥,  related to the 

reference frames anchored to the ‘cuts’ w.r.t the 

global frame {0}, obtaining 𝑇0,4(𝑥) and 𝑇0,5(𝑥); 

4. reduce the system to two serial chains - the two 

Axels – separating them from the EE; 

5. write the kinematic equations of the two chains 

into the joint variables space 𝑞 (with D-H), from 

the reference frames {0} to the frames anchored 

to the cuts, obtaining 𝑇0,4(𝑞) and 𝑇0,5(𝑞); 

6. restore the integrality constraints, imposing the 

equalities between the calculated transformation 

matrices into the two task spaces. 

Operating the aforementioned steps, direct and 

inverse kinematics of the rover can be solved. It is 

important for the purpose of this work to key focus 

on the main terms that the control method uses, 

which are the transformation matrices between the 

ground and the two passive spherical joints: 

 
{
𝑇0,4(𝑞) = 𝑇0,4(𝜃1

∗, 𝜃2
∗, 𝜃3

∗, 𝜃4
∗, 𝑏)

𝑇9,5(𝑞) = 𝑇0,4(𝜃5
∗, 𝜃6

∗, 𝜃7
∗, 𝜃8

∗, 𝑏)
 (1) 

which are similarly computed due to the symmetry of 

the model, and are functions of the roll, pitch and 

yaw joint variables of the two Axel rovers. From a 

mathematical point of view, the general characteristic 

of the kinematic model accepts constrained joints to 

be negated (set to zero), which allows the 

computation to remain consistent and valid. 

3 3D KINEMATIC CONTROL 

The presented control strategy aims to exploit the 

passive-steering capabilities of DuAxel to enable 

precise trajectory tracking, taking into account the 

roll motion when the rover is crossing over 
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obstacles that usually make the rover drift from the 

desired heading direction. 

3.1 Control Assumptions and Features 

The main assumptions to consider for DuAxel are 

reported as follows: 1) the pitch joint motions are 

neglected; 2) the front Axel is free to rotate in only 

two degrees-of-freedom (yaw and roll) whilst the 

rear Axel is free to rotate in only one degree-of-

freedom (yaw), as the roll joint is fixed; 3) the 

front roll motion allows the wheels to follow the 

contours of uneven terrain, but this is achieved 

only if the wheels are always on the ground; this 

leads to a limitation in the size of the obstacles that 

can be traversed. 

Thus, all the variables used by the control strategy 

are introduced in Tab. 1: note that the angle 

variables, previously introduced with D-H 

convention (𝜃𝑖
∗), now aim to express the current 

value of that joint angles; moreover, subscripts for 

referring to rear/front Axel are used only when 

necessary to specify it, otherwise the symbol will 

refer to the generic Axel. 

Parameter Symbol 

Front Axel roll angle Φf  

Single Axel steer angle  Ψ (r/f) 

Single Axel compensated steer angle Ψ (r/f)
comp

 

Single wheel compensated 

feedforward velocity scaling (for a 

generic wheel) 

scomp 

DuAxel roll angle  𝜑 

DuAxel pitch angle  𝜗 

DuAxel yaw angle  𝜓 

DuAxel heading angle  α 

Rover length (distance between 

steering joints) 
L 

Single Axel drop (height of steering 

joints above wheel centers axis) 
b 

Single Axel width (distance between 

wheel centers) 
d 

Wheel radius r 

Table 1: 3D kinematic control common variables 

3.2 Control Equations 

The common form of kinematic control for 

passively steered rover is composed of a 

feedforward term, which maps the commanded 

twist into the wheel velocities, and a feedback term, 

based on the error between the desired steering and 

the current steer angle. Therefore, steering motion 

can be achieved with closed-loop control of each 

Axel steer/yaw angle so that the global yaw angle 

of the rover could consequently follow the desired 

heading angle.  

The presented 3D control extends the capabilities 

of a 2D kinematic control, to address driving over 

obstacles. Such 2D form, described for a single 

Axel (rear/front) in Eq. 2, assumes that all wheels 

drive in a plane. 

[
𝑣̂𝑙

𝑣̂𝑟
] =

[
 
 
 
 

1

cos (Ψ̂)
−

𝑑

2

1

cos (Ψ̂)

𝑑

2 ]
 
 
 
 

[𝑉̂
ω̂

] + 𝐾𝑝 [
−(Ψ̂ − Ψ)

Ψ̂ − Ψ
] (2) 

with: Ψ̂ = 𝑎𝑡𝑎𝑛2(
𝐿

2𝑅
),   R̂ =

𝑉̂

𝜔̂
 

The symbol ^ is used to denote commanded 

variables: in detail, 𝑣̂𝑙  and 𝑣̂𝑟  denote the 

commanded left and right wheel velocities for a 

single Axel, 𝑉̂  and 𝜔̂  are the commanded 

longitudinal and angular velocities respectively, 𝐾𝑝 

is the proportional gain used for the feedback term, 

Ψ̂  is the commanded steer angle for a single 

generic Axel, and R̂ is the commanded turn radius 

(positive for a counter-clockwise arc, negative for 

clockwise).  

3.3 Three-dimensional Expansion 

When the DuAxel rover drives over obstacles, the 

interaction with the external object causes non-

zero front Axel roll angle, breaking the planar 

assumptions. Because of this motion, the 

steering/yaw of the rover is affected in two ways:  

1) the robot yaw angle directly   changes, so the 

rover will not follow the desired heading angle 

(|𝜓 − α| > 0). Being the steering angles measured 

in the rover frame, the commanded steer angles 

must be changed in order to align the two Axels 

with the desired heading at the same time: a new 

term Ψ̂𝑐𝑜𝑚𝑝 , already introduced in Tab. 1 as 

commanded compensated steer angle, must 

therefore be computed for each Axel;  

2) the 3D wheel velocity vector is no longer 

parallel to the terrain plane: when projected onto 

the ground, wheels that are traversing obstacles 

appear to move slower, which if uncorrected 

causes deviations in the rover yaw angle. The roll 

compensation, in this case, is performed by 

computing a feedforward velocity scaling factor 

for each wheel (and of course for each Axel), 

denoted as scomp , which correctly projects the 

velocity vector.  

After having introduced these new terms, the 3D 
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passive-steering, kinematic control law, for a 

single Axel, is formalized as follows: 

[
𝑣̂𝑙

𝑣̂𝑟
] = [

𝑠𝑙
𝑐𝑜𝑚𝑝

0

0 𝑠𝑟
𝑐𝑜𝑚𝑝]

[
 
 
 
 

1

cos (Ψ̂𝑐𝑜𝑚𝑝)
−

𝑑

2

1

cos (Ψ̂𝑐𝑜𝑚𝑝)

𝑑

2 ]
 
 
 
 

[𝑉̂
ω̂

]

+ 𝐾𝑝 [
−(Ψ̂𝑐𝑜𝑚𝑝 − Ψ)

Ψ̂𝑐𝑜𝑚𝑝 − Ψ
] 

(3) 

From a different point of view, the effect of such 

3D control approach is to make the projection of 

the 3D wheel velocity onto the ground plane match 

the wheel velocity commanded by the 2D 

controller in both direction and magnitude: 

 𝑝𝑟𝑜𝑗(𝑣̂3𝐷) = 𝑣̂2𝐷  (4) 

3.4 Wheel-Terrain Contact Points 

The 3D kinematic model formalized in the 

previous section is exploited to compute wheel-

terrain contact points in the global frame, which 

are required to calculate the two roll compensation 

terms.  

Figure 4: 3D kinematic model coordinate frames 

overlapped on the real DuAxel system. 

The wheel-terrain contact points for rear and front, 

left and right, wheels can be generally expressed in 

the global frame through the following equations: 

rear (l/r): 𝑃𝑊 = 𝑇𝑊,𝐸𝐸  𝑇𝐸𝐸,4 𝑇4,0 𝑃0 (5) 

front (l/r): 𝑃𝑊 = 𝑇𝑊,𝐸𝐸  𝑇𝐸𝐸,5 𝑇5,9 𝑃9 (6) 

where 𝑃0 denotes the contact point for the left/right 

wheel in the rear Axel base frame {0} and 𝑃9 the 

contact point for the left/right wheel in the front 

Axel base frame {9}. Such points are equal, due to 

the symmetry of the two kinematic chains, and 

also constant: 𝑃0 =  𝑃9 = [0, −𝑟,± 𝑑 2⁄ , 1]𝑇 . It is 

easy to notice that the third element has positive 

sign for the right wheels and negative for left ones.  

Introducing the variables expressed in Tab. 1, the 

Eqs. 5-6 can be expanded as: 

 𝑃𝑊 = 𝑇𝑍𝑌𝑋(𝜑, 𝜗,𝜓) 𝑇𝑅𝑦(−𝜋 2⁄ ) 𝑇𝑅𝑧(𝜋) 

𝑇𝑇𝑧(− 𝐿 2⁄ ) 𝑇0,4
−1(Ψ𝑟 , 𝑏)𝑃0 

(7) 

 𝑃𝑊 = 𝑇𝑍𝑌𝑋(𝜑, 𝜗, 𝜓) 𝑇𝑅𝑦(−𝜋 2⁄ ) 𝑇𝑅𝑧(𝜋)  

𝑇𝑇𝑧(𝐿 2⁄ ) 𝑇9,5
−1(Φ𝑓 , Ψ𝑓 , 𝑏) 𝑃9 

(8) 

where 𝑇0,4
−1 and  𝑇9,5

−1 are exactly the inverses of the 

homogeneous transformation matrices 𝑇0,4 and 𝑇9,5  

computed in the kinematic analysis of Sec. 2.2; 

furthermore, 𝑇𝑅𝑦 , 𝑇𝑅𝑧  and 𝑇𝑇𝑧express two rotations 

around the y- and z-axis. Finally, 

𝑇𝑍𝑌𝑋(𝜑, 𝜗, 𝜓) denotes the homogeneous 

transformation matrix between the global and the 

End-Effector frames, which is obviously function 

of the orientation of the rover (roll, pitch and yaw 

motions of DuAxel, introduced in Tab. 1) – note 

that in such specific case, the global frame {W} 

has been considered as co-located with the {EE} 

frame. Expressing in such complete form is very 

useful because if a parameter has to be neglected it 

can be directly be set to zero, but the formulation 

still remains general for every case, thus perfectly 

suited for future usage of the same model analysis. 

4 ROLL COMPENSATION TERMS 

In this section the calculation of both roll 

compensation terms is explained. These terms 

modify the commanded steer angles and velocity 

of the wheels, so that the rover can maintain the 

desired trajectory when is traversing complex 

terrain. 

4.1 Compensated Steer Angles 

Figure 5: Alignment of the left and right side vectors from 

rear to front wheels with the heading direction, borrowed 

from [3]. 

To compute a unique solution for the commanded 

compensated steer angles Ψ̂𝑐𝑜𝑚𝑝  (for rear and 

Front Axel) one additional constraint is required: 

in the desired steering configuration the vectors 
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from rear-left to front-left and from rear-right to 

front-right wheel-terrain contact points has to be 

aligned with the DuAxel heading direction, as 

shown in Fig. 5. The compensation terms for both 

Axels are calculated iteratively using Newton’s 

method - it has been developed and processed 

analytically, without using any solver.  

Algorithm 1: calculation for both Axels 

1:  Ψ̂𝑐𝑜𝑚𝑝 = Ψ̂ 

2: error = threshold 

3: while error ≥ threshold do 

4:  compute 𝑃𝑊 for rear wheels  

5: compute 𝑃𝑊 for front wheels 

6: 𝑃𝑊 = 𝑇𝑅𝑧
(𝜓 − 𝛼)𝑃𝑊 (for all wheels) 

7:  error =  Ψ̂ −  𝛼𝐴𝑥𝑒𝑙 (for each Axel) 

8: Ψ̂𝑐𝑜𝑚𝑝 =  Ψ̂𝑐𝑜𝑚𝑝 −𝕁−1 error 

9: end while 

Alg. 1 summarize the computation of Ψ̂𝑐𝑜𝑚𝑝 , 

which denotes a 2x1 vector containing the 

compensated terms for rear and front Axel 

respectively - all the other underlined terms 

express 2x1 vectors themselves: 

Line 1-to-3: the commanded compensated steer 

angles are initialized with the commanded steer 

angles without compensation, whilst Axels 

heading errors are initialized as the threshold, in 

order to perform the while loop at least once; the 

while loop is used to compute the Newton’s 

method;  

Line 4: the locations of the wheel-terrain contact 

points, for the rear Axel are, calculated in the 

global frame using Eq. 7, introducing the rear 

Ψ̂𝑐𝑜𝑚𝑝  instead of Ψ𝑟 ; 

Line 5: the same procedure is computed for the 

front Axel using Eq. 8, introducing the front 

Ψ̂𝑐𝑜𝑚𝑝  instead of Ψ𝑓 ; 

Line 6: the vectors from rear to front contact points, 

for both left and right sides, are constrained to be 

aligned with the heading direction. To perform this 

step, it is necessary to rotate about the z-axis of the 

global frame {W} by the difference between the 

rover yaw and the heading angle (𝜓 − 𝛼),which is 

geometrically estimated as follows: 

𝜓 − 𝛼

=
Δℎ𝑙𝑒𝑓𝑡  (𝜓 − 𝛼)𝑟𝑖𝑔ℎ𝑡 + Δℎ𝑟𝑖𝑔ℎ𝑡  (𝜓 − 𝛼)𝑙𝑒𝑓𝑡

Δℎ𝑙𝑒𝑓𝑡 + Δℎ𝑟𝑖𝑔ℎ𝑡
 (9) 

with:      Δℎ𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡 = |𝑃𝑓𝑟𝑜𝑛𝑡(𝑧) − 𝑃𝑟𝑒𝑎𝑟(𝑧)|, 

 (𝜓 − 𝛼)𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡 = 𝑎𝑡𝑎𝑛2(𝑃𝑓𝑟𝑜𝑛𝑡(𝑦) − 𝑃𝑟𝑒𝑎𝑟(𝑦),  

                                          𝑃𝑓𝑟𝑜𝑛𝑡(𝑥) − 𝑃𝑟𝑒𝑎𝑟(𝑥)) 

where the elements 𝑃𝑟𝑒𝑎𝑟/𝑓𝑟𝑜𝑛𝑡  (𝑥/𝑦/𝑧) stand for 

the x, y or z components of the rear/front wheel-

terrain contact points 𝑃𝑊 . With this computation it 

is easy to derive that (𝜓 − 𝛼)𝑟𝑖𝑔ℎ𝑡  and (𝜓 − 𝛼)𝑙𝑒𝑓𝑡 

are the angles of the rear-to-front vectors into the 

ground plane, illustrated in Fig. 5, for left and right 

sides respectively, while (𝜓 − 𝛼) is a weighted 

average of these two angles: more weight is given 

to the side with a smaller difference in height 

between the wheels, i.e. the side driving on flatter 

terrain; 

Line 7: the Axels heading errors are calculated: the 

single error is defined as the difference between 

the nominal commanded steer angle on flat terrain 

Ψ̂ and the single Axel heading 𝛼𝐴𝑥𝑒𝑙  , measured by 

projecting the left and right contact points onto the 

ground plane: 

𝛼𝐴𝑥𝑒𝑙 = 𝑎𝑡𝑎𝑛2(𝑃𝑟𝑖𝑔ℎ𝑡(𝑥) − 𝑃𝑙𝑒𝑓𝑡(𝑥), 

                   −𝑃𝑟𝑖𝑔ℎ𝑡(𝑦) + 𝑃𝑙𝑒𝑓𝑡(𝑦)) 
(10) 

Where, by analogy, the elements 𝑃𝑟𝑖𝑔ℎ𝑡/𝑙𝑒𝑓𝑡(𝑥/𝑦) 

stand for the x or y components of the left/right 

contact points 𝑃𝑊  for the single Axel – the two 

computed angles are englobed in the 2x1 vector  

𝛼𝐴𝑥𝑒𝑙  ; 

Line 8: according to Newton’s method, the update 

to the commanded compensated steer angle vector 

Ψ̂𝑐𝑜𝑚𝑝  is calculated using the 2x2 Jacobian matrix 

of the error vector with respect to Ψ̂𝑐𝑜𝑚𝑝  itself - 

the Jacobian has been computed analytically. 

4.2 Compensated Feedforward Velocities 

Algorithm 2: calculation for a single wheel  

1:  loop 

2:  if (rear wheel) then 

3:   compute 𝑃𝑊
𝑡  using Eq. 7 

4: else 

5:  compute 𝑃𝑊
𝑡  using Eq. 8 

6: 𝑃𝑊
𝑡 (𝑧) = 𝑃𝑊

𝑡 (𝑧) + Δℎ𝑟𝑜𝑣𝑒𝑟 

7: Δℎ𝑤ℎ𝑒𝑒𝑙 = 𝑃𝑊
𝑡 (𝑧) − 𝑃𝑊

𝑡−1  

8:  𝑠𝑙𝑜𝑝𝑒𝑤ℎ𝑒𝑒𝑙 = 𝑠𝑖𝑛−1(Δℎ𝑤ℎ𝑒𝑒𝑙/(𝑟𝜔𝑤ℎ𝑒𝑒𝑙Δ𝑡)) 

9: 𝑠𝑐𝑜𝑚𝑝 = 1/𝑐𝑜𝑠(𝑠𝑙𝑜𝑝𝑒𝑤ℎ𝑒𝑒𝑙) 

10: 𝑃𝑊
𝑡−1 = 𝑃𝑊

𝑡 (𝑧) 

11: end loop 
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The compensated feedforward velocity terms 

𝑠𝑐𝑜𝑚𝑝 are necessary to scale the commanded wheel 

velocities when driving over the obstacles: indeed, 

after scaling by such terms 𝑠𝑐𝑜𝑚𝑝 , the projection of 

the 3D wheel velocity vector onto the ground plane 

is equivalent in both magnitude and direction to 

the 2D velocity vector on flat terrain. The 

calculation of the compensated term for a single 

wheel is explained by  Alg. 2: 

Line 2-to-5: at each timestep, the location of the 

single wheel-terrain contact point is computed in 

the global frame - differently from the previous 

algorithm, the current values of Ψ𝑟  and Ψ𝑓are used; 

Line 6: the offset Δℎ𝑟𝑜𝑣𝑒𝑟  denotes the difference in 

height of the {EE} frame origin between the 

current and previous timestep, expressed in the 

global frame. This value is summed to the z 

component of the contact point, depending on 

where the obstacle is located, i.e., the difference in 

height of the rover is summed only on the side 

(left/right) where the obstacle is traversed; 

Line 7: by analogy, the difference in height of the 

contact points between the current and previous 

timestep, called Δℎ𝑤ℎ𝑒𝑒𝑙 , is calculated; 

Figure 6: Wheel position at two adjacent timesteps as the 

wheel climbs a slope/obstacle, borrowed from [3]. 

Line 8: starting from Fig. 6, the slope angle is 

calculated geometrically: this value refers to a 

measure of the inclination of the obstacle and is 

useful to have a qualitative idea of “how much the 

projection will affect the wheel velocity”; 

Line 9: the compensated feedforward velocity 

scaling term 𝑠𝑐𝑜𝑚𝑝  is calculated, based on a simple 

trigonometric relation. It is important to note that 

these scaling terms increase with the steepness of 

the terrain/obstacle, as it should be; 

Line 10: the previous wheel-terrain contact point is 

updated with the current value for the next 

iteration. 

From a technical point of view, the algorithm has 

been developed to compute the compensated 

feedforward velocity scaling terms for all the 

wheels simultaneously. 

5 RESULTS 

In this section the results of the control architecture 

are exposed, proving enhanced mobility of the 

DuAxel rover system in presence of obstacles. The 

strategy is entirely implemented as a ROS node, 

using C++ language: this high-level node 

performs exactly the algorithms described in the 

previous section. 

5.1 Dynamic Simulation Results 

Evaluation of the control method is performed 

exploiting Gazebo to visualize the effect of the 

control action into a 3D simulator - a desert 

compact terrain and two small ramps  are added to 

the  environment to simulate a ramp obstacle 

(dimensions are set in order to respect the physical 

limits imposed by the DuAxel wheels).  

Figure 7: Gazebo simulation tests to compare the 

behavior of the controller with roll compensation 

enabled and disabled. 

Several tests have been performed making the 

rover cross the ramp obstacle, positioned on the 

right, while following a straight trajectory (desired 

heading equal to zero), with a linear velocity of 0.1 

m/s and a controller gain equal to 0.1, in order to 

compare the behavior of the rover when roll 

compensation is enabled or disabled - rover 

locomotion is addressed through a Differential 

Drive controller, which receives the wheel 

velocities commands from the high-level control 

node, whilst angle values are obtained by link and 

joint states or estimated from the central module 
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IMU. From Fig. 7 it is easy to visualize that with 

roll compensation disabled the kinematic 

controller behaves as the rover is driving on flat 

terrain, causing a final error in the difference 

between the yaw angle of the rover and the desired 

heading - the rover follows a curve that drift from 

the desired path. With roll compensation on, 

instead, the kinematic controller incorporates the 

steering compensation term, which takes into 

account the roll motion, and the velocity 

compensation terms, which correctly project the 

wheel velocity onto the ground: after the obstacle 

is traversed, the yaw and the heading are aligned 

and the rover is able to follow the straight direction. 

Figure 8: Results form a set of Gazebo simulations: 

comparison between roll compensation enabled and 

disabled demonstrates the enhancement in the trajectory 

following capabilities when the roll motion is incorporated 

into the control strategy formulation. 

In Fig. 8, the same results are reported from a 

different perspective, plotting the values (on 

average over a set of simulations) of the front roll 

joint, the front and rear steer joints, and the 

difference between the yaw of the rover and the 

desired heading, over the entire trajectory. Plots 

effectively confirm that DuAxel faces an incorrect 

final configuration when the roll compensation is 

disabled, as the two steer angles are completely 

misaligned and the yaw angle diverges from the 

desired heading angle - this last value is easy to 

obtain or measure in Gazebo, but not in the real 

world because DuAxel does not have a state 

estimator or a specific sensor. On the other hand, 

the 3D kinematic control with roll compensation 

enabled definitely enhances the mobility of the 

rover, as it is able to traverse the obstacle and 

being aligned to the desired heading. 

5.2 Experimental Results 

Figure 9: Physical experiments with roll compensation 

enabled: the rover is able to follow a desired straight path. 

Figure 10: Physical experiments with roll compensation 

disabled: the rover diverges from the desired trajectory. 

The entire architecture is implemented on the 

DuAxel rover to check for trajectory following on 

real-time operations. The control method is 

developed as a ROS node, using C++ and Python, 
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and incorporated in the locomotion framework of 

the rover system. Evaluation and comparison of 

roll compensation on and off are performed 

therefore through physical experiments - the 

Gazebo environment has been replicated in the 

JPL’s mini Mars-Yard, where a similar ramp 

obstacle is built with concrete bricks. 

 

Figure 11: Analysis form a set of experiments aiming to 

replicate the simulation tests setup: results validate the 

control strategy on the physical system as well. 

By analogy with the simulation testing, a set of 

field experiments confirms improvements in the 

mobility of DuAxel. From Figs. 9-to-11 it is easy 

to visualize that with roll compensation off the 

rover drifts from the desired path, as the kinematic 

control is not able to re-align the two steer angles 

(the rover is hitting the wall, as it is following an 

undesired curve). With roll compensation enabled, 

instead, the kinematic controller includes the two 

roll compensation terms: the result shows that after 

the obstacle is traversed the two steering angles are 

aligned with the heading angle, and the rover can 

continue to follow the straight direction - note that 

the difference between the rover yaw angle and the 

desired heading is not reported because the rover 

framework does not provide neither a state 

estimation nor an odometry system.  Such results 

not only are comparable with the ones obtained 

from the simulation tests, but they are also 

physically coherent with the model, validating 

therefore the control strategy and demonstrating 

enhancements in the trajectory following capability. 

6 CONCLUSIONS 

In this work a 3D kinematic passive-steering 

control with roll compensation, which leverages a 

novel 3D model formalized, has been proposed to 

enhance trajectory following capabilities of the 

DuAxel rover system over flat terrain in presence 

of obstacles. Both simulation and experimental 

results have proved the advantages of integrating roll 

compensation terms to successfully address precise 

locomotion. A drawback of the presented method is 

the lack of information about the obstacles the 

rover has to climb, as well as the constraint on 

their size.  

Future works could include the integration of a 

higher-level planner to manage the trajectory 

definition. Moreover, the estimation of some 

parameters needed could be handled leveraging on 

more robust approaches. Finally, a system for 

terrain mapping could surely enhance the control 

strategy in terms of defining the ground plane and 

estimating obstacles. To accomplish all these tasks, 

DuAxel would need additional capabilities and 

autonomy by leveraging visual and perception 

systems, as well as additional locomotion assets. 
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