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ABSTRACT
Rovers require knowledge of terrain to plan trajectories that
maximize safety and efficiency. Terrain type classification
relies on input from human operators or machine learning-
based image classification algorithms. However, high level
terrain classification is typically not sufficient to prevent
incidents such as rovers becoming unexpectedly stuck in
a sand trap; in these situations, online rover-terrain inter-
action data can be leveraged to accurately predict future
dynamics and prevent further damage to the rover. This pa-
per presents a meta-learning-based approach to adapt prob-
abilistic predictions of rover dynamics by augmenting a
nominal model affine in parameters with a Bayesian re-
gression algorithm (P-ALPaCA). A regularization scheme
is introduced to encourage orthogonality of nominal and
learned features, leading to interpretable probabilistic esti-
mates of terrain parameters in varying terrain conditions.

1 INTRODUCTION
Extraterrestrial rovers must traverse terrain that is often
rugged and uncertain in order to achieve mission goals. To
ensure a high degree of safety and maximize efficiency, it
is crucial for the rover to be equipped with as much knowl-
edge as possible about the terrain it will traverse. In modern
rover systems, sources of information include terrain type
classification, hazard detection, and excessive slip detec-
tion. Terrain type classification relies on input from human
operators or machine learning-based image classification
algorithms [1], [2], as well as proposed approaches to clas-
sify terrain using vibration measurements [3]. However,
terrain classifications are not sufficient to guarantee safety
for path selection. Discrete categories of terrain mask the
complexity of vehicle-terrain interactions that are unique to
individual vehicles and different environmental conditions.
To truly avoid incidents like NASA’s Spirit rover becoming
stuck in a sand trap [4], and Curiosity’s wheels being dam-
aged by sharp rocks [5], wheel-terrain dynamics must be
considered. Using proprioceptive or visual measurements,
unexpected wheel-terrain interaction effects such as exces-
sive slip or sinkage can sometimes be detected as they oc-
cur [6, 7, 8, 9] but in order to predict and prevent such un-
desirable wheel-terrain interactions, it is crucial to main-
tain an adaptive model of the terrain parameters that gov-
ern wheel-terrain interaction. Having an estimate of terrain
parameters allows the rover to adapt its control and plan-
ning strategy to a given terrain [10], accurately predict the
traversability of neighboring terrain regions [11], and pre-
vent further damage to the rover.

Related Work. Analytical models governing wheel-
terrain interaction were first introduced by Bekker, Wong,
and Reece [12, 13, 14] and have since been expanded to
incorporate multiple physical effects [15]. However, these
models are complex, so efforts to estimate terrain parame-
ters with the limited hardware on-board a rover have moti-
vated approaches using linear-least squares regression [16]
or a Newton-Raphson method [17] on simplified terrame-
chanics models. These approaches require access to sen-
sor information about the rover’s forward velocity from
an IMU or visual odometry, wheel angular velocity from
tachometers, sinkage from camera measurements, and a
method for measuring or computing the vertical load and
torques on the wheels [16]. These methods provide good
online estimates of terrain parameters on a variety of soils,
but cannot model non-linear interactions, and moreover,
they do not provide any measure of uncertainty for their
estimates.

Since wheel-terrain interaction models have multiple
sources of uncertainty, efforts to validate these models
against experimental data have relied on fitting stochas-
tic semi-empirical models [18], [19] which benefit from
a measurement of uncertainty for terrain parameter esti-
mates. Such measures of uncertainty can be obtained by
modeling the wheel-terrain interactions as a Gaussian Pro-
cess (GP) [19] but GPs are limited in their ability to incor-
porate physical priors, and have high computational cost.
Instead, Bayesian neural network models such as ALPaCA
[20] have been shown to be successful in modeling un-
certain dynamics for safety critical systems while remain-
ing computationally efficient [21, 22]. ALPaCA performs
Bayesian linear regression on neural network features that
are learned via meta-learning (or “learning-to-learn”). By
training on a variety of physically plausible simulations,
the ALPaCA model is capable of learning expressive fea-
tures capturing behavior that may be difficult to represent
analytically. In this work, we develop a nominal model that
relates the dynamics of the rover to the terrain parameters.
This model is based on work by Iagnemma et al. [16] and is
linear in terrain parameters. Next, we augment the nominal
model with an ALPaCA model [20], to produce a model
that yields accurate predictions as well as Bayesian poste-
riors reflecting prediction uncertainty. A similar approach
is employed in [23, 24, 25] of relating the pose error to slip
estimates, with the differences being that our model esti-
mates terrain parameters instead of slip directly, providing
an understanding of the terrain, and our model yields not
only predictions but also probabilistic estimates to charac-
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terize uncertainty in our predictions.

Problem Formulation. We are focused on developing a
model to learn, adapt, and predict a rover’s dynamics on
unknown terrain and provide online estimates of the phys-
ical parameters that govern wheel-terrain interactions. The
two key parameters of interest are cohesion c and internal
friction angle φ that determine the maximum terrain shear
strength [16] and therefore, a rover’s ability to safely tra-
verse the terrain. Since rovers will be encountering novel
and unmodeled terrain, it is crucial for safety that our
model provide probabilistic predictions and adapt online.

We assume that the sensor suite on-board the rover, includ-
ing wheel encoders, IMU, and vision system, gives us in-
formation about the rover’s current position, velocity, slip,
and sinkage, though we hope to relax the requirement on
knowledge of slip and sinkage in future work.

Contributions. The key contributions of this paper are
as follows. We develop a framework for wheel-terrain dy-
namics modeling that is capable of rapid adaptation, by
first developing a nominal model that is linear in parame-
ters. In order to capture the non-linear interactions between
the rover dynamics and terrain parameters, we augment the
linear model with new more complex meta-learned neu-
ral network features using a Bayesian regression algorithm
(ALPaCA). We present an alternative form of the ALPaCA
model, which we name P-ALPaCA, which enables joint in-
ference of the parameters of the ALPaCA model and of the
nominal model. We introduce a new regularization scheme
to promote orthogonality between the nominal model fea-
tures and the meta-learned features, providing interpretable
terrain parameter estimates. Lastly, we demonstrate our
framework on simulations of rocker-bogie dynamics on
varying terrains.

2 BACKGROUND
The dynamics of a rover are different on different terrains.
Therefore, predicting rover dynamics is, in its most gen-
eral form, a system identification problem, where Bayesian
regression can be leveraged to produce probabilistic predic-
tions that adapt online. Approaches using Gaussian Process
regression have been used for model identification [19] but
are computationally inefficient for large numbers of sam-
ples and cannot easily incorporate prior knowledge from
the existing models of rover dynamics and wheel-terrain
interaction that we discuss in sections 2.2 and 2.3. Both
these problems are addressed by using a Bayesian meta-
learning algorithm, ALPaCA [20], that we discuss in sec-
tion 2.1 which allows for efficient regression while incor-
porating prior knowledge.

2.1 System Identification via Meta-Learned
Neural Network

Our system identification approach builds upon ALPaCA
[20], a Bayesian meta-learning algorithm. This approach
separates the online adaptation process—a convex opti-
mization problem that can be solved analytically—from the

offline non-convex feature learning process.

The basis of this method is meta-learning, in which it is
assumed there exists a distribution over “tasks”. For exam-
ple, in system identification, these tasks may correspond to
different system dynamics. Meta-learning aims to use data
collected from several tasks to improve the efficiency and
accuracy of learning in a new task sampled from the same
distribution.

We will write the system dynamics as

x+ = f (x,u;θ) + ε (1)

where θ ∼ p(θ) corresponds to the task and may be seen as
parameters of the environment, and ε is zero-mean Gaus-
sian noise, uncorrelated in time, with covariance Σε . We
write x and u to denote state and action respectively. We
assume episodic interaction with the system, where θ is
sampled at the beginning of the episode, and held fixed
throughout. While this is a somewhat unrealistic assump-
tion in the context of online terramechanics modeling, we
will discuss relaxations of this assumption in Section 5.
Moreover, several works have addressed extensions beyond
this assumption that may be applied on top of the methods
developed herein [26, 27]. We assume θ is not directly
observed, and we do not know f (·, ·; ·). Our goal in the
meta-learning problem setting is to learn some approxima-
tion of (1) that is capable of being adapted online. As tran-
sitions are observed in an episode, we wish to use experi-
ence within an episode to infer θ and improve subsequent
predictions.

The approach of ALPaCA is to perform Bayesian linear re-
gression on learned neural network features. The predictive
model takes the form

x̂+ = Kφ(x,u;w) + ε (2)

where φ(·, ·; ·) is a neural network with weights w, and
K ∈ Rnx×nφ is a matrix. We write x̂+ to denote the pre-
dicted next state. The matrix K may be seen as the last
linear layer of the neural network. Critically, the ALPaCA
model maintains a distribution over K reflecting the epis-
temic uncertainty—uncertainty that can be reduced with
more data collection. Thus, the ALPaCA model returns
a predictive distribution for x̂+ as opposed to a point pre-
diction. The central idea of ALPaCA models lies in up-
dating the last layer of the network online. This update
may be performed by recursive least squares, similar to the
Kalman filter. This form of updating is not novel in sys-
tem identification; indeed, recursive least squares updat-
ing on neural network basis functions has been a common
approach in nonlinear identification since the 1980s [28].
Where ALPaCA varies from these classical approaches is
to train the neural network by backpropagating the train-
ing loss through the model update, to ensure the features
are broadly useful across multiple tasks and across time.
As such, ALPaCA combines ideas from classical adaptive
control with ideas from recurrent neural networks. Fun-
damentally, in the ALPaCA model, the matrix K serves to
summarize all information within one episode and account
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Figure 1 Forces acting on planar rocker-bogie

for variations between tasks, whereas the neural network
features are learned to be useful across all tasks and are not
updated online.

We will now make concrete the above (informal) discus-
sion. We assume access to operational data in a variety of
environments, obtained via previous experience or simula-
tion. ALPaCA fixes a matrix normal prior on K, which we
write

p(K) =MN(K̄0,Λ
−1
0 ,Σε) (3)

where K̄0 denotes the prior mean and Λ0 is a prior preci-
sion (inverse of covariance) matrix. Note that the matrix
normal distribution over the matrix K is a normal distribu-
tion over the vectorized matrix, with a particular covariance
structure. We refer the reader to [20] for more details. Let
Dt = {(xτ,uτ,xτ+1)}t−1

τ=0 denote the state/action data ob-
served within an episode at time t. Given this data, the
posterior over K is

p(K | Dt) =MN(K̄t,Λ
−1
t ,Σε). (4)

where K̄t,Λ
−1
t may be computed via recursive least squares

through update rules

Λ−1
t = Λ−1

t−1 −
1

1 + φT
t Λ−1

t−1φt
(Λ−1

t−1φt)(Λ−1
t−1φt)T (5)

Qt = xtφ
T
t + Qt−1 (6)

where
K̄t = Λ−1

t Qt (7)
and where φt = φ(xt−1,ut−1). Given this posterior, the
posterior predictive distribution may be computed, yielding

xt+1 ∼ N(K̄tφt+1, (φT
t+1Λ−1

t φt+1 + 1)Σε). (8)

Given this posterior predictive distribution, we can evaluate
the likelihood of the remaining data in the episode (that has
not been conditioned upon) to update the neural network
weights and the prior. The prior for the model relies on
existing physics models of the rover dynamics and wheel-
terrain interactions, which we discuss next.

2.2 Rover Dynamics and Kinematics

In order to develop a model for rover dynamics on differ-
ent terrains, we require knowledge of the kinematics of the
rover. Though our approach would work on any configu-
ration of the rover, in this work we consider laterally sym-
metric rocker-bogie motion, i.e. right and left wheels have
identical motion and driving torques. This is a justified
assumption for low-acceleration motion in a straight-line

Figure 2 Rigid wheel on deformable terrain.
or very large radius turns. With knowledge of the rover
kinematics and terrain geometry, the forward net force Fx

(see Fig. 1) can be related to the normal Ni and tractive Ti

ground reaction forces through

Fx = ST
[
N1 N2 N3 T1 T2 T3

]T

S =
[
−s1 −s2 −s3 c1 c2 c3

]T (9)

where ci = cosαi and si = sinαi [29].

2.3 Wheel-Terrain Interactions
In this section, we describe how the ground reaction forces
can be related to the terrain parameters. Fig. 2 shows a free
body diagram of a rigid wheel travelling on deformable ter-
rain. For simplicity, the wheel is assumed to be rigid and
moving quasi-statically with low acceleration. The interac-
tion model for a rigid wheel traversing deformable terrain
is obtained by considering the force and moment balance
[16]

W = rb


θ2∫

θ1

σ(θ) cos (θ) dθ +

θ2∫
θ1

τ(θ) sin(θ) dθ


DP = rb


θ2∫

θ1

τ(θ) cos(θ) dθ −

θ2∫
θ1

σ(θ) sin(θ) dθ


M = r2b

θ2∫
θ1

τ(θ) dθ

(10)

where W is vertical load applied to the wheel, DP is draw-
bar pull applied to the wheel from a suspension system, M
is wheel drive torque produced by an actuator, θ is the ar-
bitrary angular location of wheel-terrain contact measured
from a vertical axis, θ1 is the angle at which the wheel first
makes contact with the terrain, θ2 is the angle at which the
wheel loses contact with the terrain, σ is radial stress nor-
mal to the wheel-terrain contact, τ is shear stress tangent to
the wheel-terrain contact, r is wheel radius, and b is wheel
width.

In quasi-static equilibrium, the normal force N equals the
weight W and the traction force T counteracts the drawbar
pull DP, henceforth N and T will be used in place of W and
DP. By considering linear approximations of the shear and
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normal stress, Iagnemma et al. [16] find analytical expres-
sions of these forces

N = f0
[
σm f1 − τm f2 − c f3

]
T = f0

[
σm f2 + τm f1 − c f4

]
M =

r2b
2

(τmθ1 + cθm)

(11)

where σm, τm are the maximum radial and shear stresses,
f0−4 are all functions of θ1 and θm which is the angle at
which maximum stress occurs, which are given by

f0 =
rb

θm(θ1 − θm)
f1 = −θm cos θ1 + θ1 cos θm − θ1 + θm

f2 = θm sin θ1 − θ1 sin θm

f3 = θ1 sin θm − θm sin θm − θmθ1 + θ2
m

f4 = θ1 cos θm − θm cos θm + θm − θ1.

(12)

The radial and shear stresses themselves are functions of
the wheel radius r, wheel width b, slip i, sinkage z, the ter-
rain parameters of interest - cohesion c and angle of internal
friction φ - as well as other terrain parameters (kc, kφ, n, k)
via

σm =

(
kc

b
+ kφ

)
(r(cos θm − cos θ1))n

τm = (c + σm tan φ)A

A = 1 − exp
(
−

r
k

[θ1 − θm − (1 − i)(sin θ1 − sin θm)]
)
.

(13)
The model exhibits low sensitivity to the other terrain pa-
rameters (kc, kφ, n, k) and these are replaced with represen-
tative values [14]. The sinkage

z = r(1 − cos θ1) (14)

is determined from the angle of initial contact between the
wheel and the terrain θ1 through wheel geometry. The an-
gle of maximum stress

θm = (c1 + ic2)θ1 (15)

is related to the angle of initial contact θ1 using terrain pa-
rameters c1, c2. Leveraging these relationships, the forces
from Eqs. 11 are expressed as functions of wheel geom-
etry, slip i, sinkage z, the terrain parameters of interest -
cohesion c and angle of internal friction φ - as well as other
terrain parameters. Therefore, with knowledge of the ver-
tical force N, torque M, sinkage z, and slip i, the terrain
parameters for cohesion c and angle of internal friction φ
are estimated via a least squares regression[

c
tan φ

]
= K†

2K1 (16)

where K1,K2 are functions of N,M, i, z [16]. We build
upon this regression model to relate the rover dynamics di-
rectly to the terrain parameters for cohesion c and angle of
internal friction φ in the following section.

3 TECHNICAL APPROACH
In this section, we build a nominal linear model relat-
ing the rover dynamics and terrain parameters. We then

incorporate this model in to an ALPaCA-based learning
framework. To allow for adaptation of the terrain param-
eters in the nominal model, we propose an extension to
ALPaCA in section 3.2 that incorporates models with un-
known parameters and performs joint inference on these
parameters. In section 3.3, a regularization scheme is in-
troduced to reduce correlation between nominal model fea-
tures and meta-learned features, thereby maintaining the in-
terpretability of the terrain parameters.

3.1 Linear Model Relating Terrain Parameters
and Dynamics

We continue to assume that noisy measurements of slip i
and sinkage z are available to the rover, but we relax the
requirement in [16] of measuring the vertical force N and
torque M through a force sensor or of computing them on-
board. Since force sensors may not be available, and the
computation adds overhead, we instead relate the terrain
parameter estimates directly to the dynamics of the rover.
Assuming the same linear stress distribution as in Section
2.3, we can find the ground normal forces Ni and traction
forces Ti (for i = {1, 2, 3}) as linear in parameters c and
tan φ

Ni = Qi

 c
tan φ

1

 where

Qi =
[
− f0 · ( f3 + A f2) − f0σmA f2 f0σm f1

]
Ti = Ri

 c
tan φ

1

 where

Ri =
[
f0 · (− f4 + A f1) f0σmA f1 f0σm f2

]
(17)

whereQ andR are 3x3 matrices with non-linear functions
of slip i and sinkage z. These can then be used to find the
forward force using (9),

Fx = ST
[
Q
R

]  c
tan φ

1

 (18)

This enables us to use rover dynamics to estimate the ter-
rain parameters or, conversely, to use terrain parameters to
predict rover dynamics via[

ẋ
v̇

]
=

[
v

Fx/m

]
=

 0 0 v
1
mS

T

[
Q
R

]
 c
tan φ

1

 (19)

Euler numerical integration is used to yield discrete time
dynamics with a chosen time step size of 0.1 seconds that
is sufficiently accurate for the low velocities of the rover.
This linear model relating dynamics and terrain parameters
is used as a prior for the ALPaCA model described next.

3.2 P-ALPaCA: Extending ALPaCA with a
Parameterized Prior Model

We now extend the previously proposed ALPaCA model to
handle linearly parameterized nominal models. We use the
term nominal to refer to a model obtained outside of the
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meta-learning framework. In this paper, we will consider
models derived via simplified dynamics equations, as dis-
cussed in the previous subsection. Previous work [22, 30]
has incorporated prior knowledge into ALPaCA models in
the form of a fixed (non-parameterized) nominal model. In
particular, previous work has considered system dynamics

x+ = f (x,u;θ) + ε = g(x,u) + h(x,u;θ) + ε, (20)

where g(·, ·) is the nominal model, capturing prior knowl-
edge of system dynamics, and h(·, ·;θ) is the unknown
component of the dynamics that we wish to learn, which
varies across episodes/tasks. Previous work has taken g(·, ·)
as fixed, and parameterized h(·, ·; ·) with an ALPaCA model

h(x,u; K) = Kφ(x,u) (21)

where K ∈ Rnx×nφ .

In this work, we investigate integrating nominal models
with unknown parameters into the previously developed
ALPaCA modeling approach. We investigate models of the
form

x+ = g(x,u;θnom) + h(x,u;θnet) + ε, (22)
where θnom denotes parameters of the nominal model and
θnet denotes (online adapted) parameters of the neural net-
work. This formulation will enable joint inference of un-
known parameters from a physical model (e.g. masses) and
parameters of the neural network model, which can capture
features not appearing in the nominal, simplified physical
model. Importantly, joint inference of these parameters is
non-trivial, and represents the core machine learning con-
tribution of this paper.

We will work with a discrete-time nominal model that is
affine in the parameters [31], of the form

g(x,u;knom) = Φnom(x,u)knom + φnom(x,u) (23)

where Φnom(x,u) is a nx × nnom matrix of basis functions,
φnom(x,u) is a constant (in the parameters) vector of length
nx, and knom ∈ R

nnom is a set of nominal parameters. To fit
with this model, we introduce an alternate version of the
ALPaCA model of the form

h(x,u;knet) = Φnet(x,u)knet (24)

with knet ∈ R
nnet . This yields the dynamics model

x+ =
[
Φnom(x,u) Φnet(x,u)

] [knom
knet

]
+ φnom(x,u) + ε

(25)
for which we write kT = [kT

nom,k
T
net]

T and Φ(x,u) =

[Φnom(x,u),Φnet(x,u)]. This approach, critically, results
in parameters that are shared for each output dimension.
Note that k ∈ Rnnom+nnet ; we write nφ = nnom + nnet. In the
nominal ALPaCA model, each output dimension is deter-
mined by a shared set of basis functions and a unique (for
each output dimension) set of parameters. In this model,
the parameters are shared for all output dimensions, and
each dimension has unique neural network features. Due
to the reduced use of adaptive parameters, we refer to this
model as Parsimonious ALPaCA, or P-ALPaCA.

Bayesian inference in this model closely follows from stan-

dard results for linear-Gaussian systems (see, e.g., the dis-
cussion of Bayesian linear regression in [32]). We fix a
prior k0 ∼ N(k̄0,Λ

−1
0 ). Then, the mean and precision (in-

verse of the covariance) are updated as

Λt = ΦT
t Σ−1

ε Φt + Λt−1 (26)

k̄t = Λ−1
t (Λt−1k̄t−1 + ΦT

t Σ−1
ε (xt − φt)) (27)

where Φt = Φ(xt−1,ut−1) and φt = φnom(xt−1,ut−1). In
the standard ALPaCA formulation the Woodbury identity
is applied to yield an efficient update rule. Applying the
same approach here does not yield computational efficiency
improvements, as we do not avoid a matrix inverse in the
update. Thus, we maintain the natural parameters of the
multivariate Gaussian during updating via

qt = qt−1 + ΦT
t Σ−1

ε (xt − φt) (28)

and the precision update (26). To perform prediction, we
may compute k̄t = Λ−1

t qt. Then, the posterior predictive
distribution is

xt+1 = N(Φt+1k̄t + φt+1,Φt+1Λ−1
t ΦT

t+1 + Σε) (29)

which may be derived based on the standard equations
for mean and variance of a random variable under linear
transformations. Given this posterior predictive, the likeli-
hood may be computed as in the standard ALPaCA meta-
learning algorithm, and used to train the neural network
features as well as the prior over k. Due to space con-
straints we do not outline the full training algorithm in this
paper; we refer to [20] for more details.

3.3 Interpretability via Feature Orthogonality

We have so far presented an approach to combine a “grey-
box” nominal system model, derived via simplified physics
of the rover system, with an entirely black-box neural net-
work model without physical interpretation. If our only ob-
jective is accurate state prediction, then our approach so far
is sufficient. More likely, however, the physical parameters
of the grey-box model provide information that is of use
to system operators, scientists, or elsewhere in the plan-
ning and control architecture. For example, inferred ter-
ramechanics properties may be critical to identify regions
as safe or unsafe for traversal. Thus, it is necessary that
our added black-box model not result in poor estimates of
the physical parameters in the grey-box model. Such an
outcome is not guaranteed; collinearity between features in
linear regression results in weights that are highly unsta-
ble under minor perturbations [33]. This collinearity may
result in the parameters of the neural network model be-
ing highly correlated with the grey-box model, resulting in
misleading estimates of the physical parameters. To reduce
this collinearity, we add a regularization term to the loss
function to promote feature orthogonality.

Let φT
i,t denote the i’th row of Φt

1. Our orthogonality regu-

1Note the notation conflict with the previous subsection; we will ig-
nore the constant (with respect to parameters) term in the nominal model
in this section for ease of presentation.

5054.pdfi-SAIRAS2020-Papers (2020)



Figure 3 Estimate of terrain parameters on loose and compact sand

larization takes the form∑
tasks

nx∑
i=1

∥∥∥∥∥∥∥I −
1
T

T∑
t=0

φi,tφ
T
i,t

∥∥∥∥∥∥∥
2

F

(30)

where ‖ · ‖F denotes the Frobenius norm and T is the length
of the episode. There are several things to note about the
above. The norm of the innermost sum over time is a Monte
Carlo approximation of the constraint

Ex∼µ,u∼π
[
φi(x,u)φi(x,u)T

]
= I (31)

where π is the controller used for data collection and µ
is the occupancy measure (i.e. the probability distribution
over states) induced by the system dynamics and the con-
troller. Thus, the addition of this regularizer may be in-
terpreted as a Lagrangian relaxation of the neural network
training loss with a constraint requiring the basis functions
to be orthogonal, as

Ex∼µ,u∼π
[
φi j(x,u)φik(x,u)T

]
= 0 for j , k (32)

where φi j denotes the j’th entry of φi. As orthogonal-
ity of features implies no multicollinearity, this regulariza-
tion term will minimize the effect and thus improve inter-
pretability of the model.

4 EXPERIMENTS
Simulations were conducted of a rover in rocker-bogie con-
figuration traveling over two types of terrain - compact sand
and loose sand - using equations for the wheel-terrain inter-
action and terrain parameters from Wong et al. [14]. For
a given rover body position, the rover dynamics were sim-
ulated by computing the ground reaction forces for each

wheel from applied torques and matching against the inte-
grals from Wong’s model which were solved using Simp-
son’s rule. The ground reaction forces were then used to
calculate the slip and sinkage for each wheel, which, along
with rover position and velocity, were the inputs to the
models. Rover kinematics was used to compute the net
forward force and resultant change in rover velocity. The
purpose of the simulations was to compare the performance
of the nominal linear model against the model augmented
with P-ALPaCA features and analyze the effect of enforc-
ing feature orthogonality.

The simulation2 was written in Python and the machine
learning models were implemented using the PyTorch li-
brary [34]. Each of the models consisted of two hidden
layers of size 128 and were trained for 1000 iterations in
batches of 20 sampled dynamics transitions each to mini-
mize the negative log likelihood of the posterior predictive
distributions. The first model was P-ALPaCA without any
added features, the second model was P-ALPaCA with two
added nominal features corresponding to the linear model
features for velocity from Eq. 19, and the third model was
P-ALPaCA with two added nominal features as well as an
additional regularization term to promote orthogonality be-
tween features as discussed in Section 3.3. The P-ALPaCA
models with nominal features had an additional loss term
to encourage the parameters associated with cohesion and
internal friction angles to be positive.

The state consisted of velocities between 0 to 1 m/s and the

2The code for all of our experiments is available at https://github.
com/StanfordASL/rover-meta-learning.
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Figure 4 Prediction error for velocity

control actions were applied wheel torques between 0 and
5 Nm, wheel slips between 0 and 1, as well as sinkage be-
tween 0 and 0.1 m. The rover mass was 10 kg, the wheel
radius was 0.4 m, and wheel width was 0.1 m. During train-
ing, the parameter for cohesion was randomly selected for
each batch between 0.5 and 5 kPa, except the band between
0.7 and 1.3 kPa which are the typical values of cohesion for
loose and compact sand [14] and were reserved for testing.
The internal friction angle was randomly selected from the
range 0 to 60 degrees, excluding the range from 20 to 45
degrees for testing. The other terrain parameters were held
fixed at the values for loose sand (n = 1.1, kc = 0.9 kPa,
kφ = 1523.4 kPa, k = 0.025, c1 = 0.18, c2 = 0.32) and
compact sand (n = 0.47, kc = 0.9 kPa, kφ = 1523.4 kPa,
k = 0.038, c1 = 0.43, c2 = 0.32) [14] during training and
perturbed by 5% during testing to ensure robustness.

First, we compare the ability of the models to predict the
dynamics of the rover given an estimate of the terrain pa-
rameters. As shown in Fig. 4, the linear model as well as
all the P-ALPaCA models have low prediction error for ve-
locity of the rover, with the largest being the error for the
linear model on loose sand, which is less than 5%.

Second, we compare the terrain parameter estimates pro-
vided by the models using the dynamics of the rover, as
well as the estimates provided from Iagnemma et al.’s
model [16]. The ground truth of vertical load and wheel
torques are passed from the simulator to Iagnemma’s
model, while the other models utilize the position and ve-
locity of the rover directly to make predictions. As seen
in Fig. 3, both the linear model and Iagnemma’s model
provide good estimates for cohesion and angle of internal
friction. The higher error for Iagnemma’s model on loose
sand is due to their assumption that the angle of maximum
shear stress is located halfway from the angle of initial con-
tact, which becomes a looser assumption for higher cohe-
sion terrains. While both P-ALPaCA models augmented
with the linear model provide uncertainty estimates, the

Figure 5 Effect of regularization strength

terrain parameter estimate shows better convergence when
orthogonality of the features is enforced explicitly through
the regularization term discussed in Section 3.3.

The addition of the regularization scheme results in inter-
pretability of the meta-learned features. P-ALPaCA with
orthogonal regularization not only provides dynamics pre-
dictions but also an estimate of the terrain parameters used
in the model, aiding in interpretability of the model. Mod-
els with orthogonal regularization produce lower parameter
estimation error than models without the regularization and
lower dynamics prediction error than the nominal linear
model. Increasing the orthogonal regularization strength,
i.e. increasing the weight on the orthogonal loss, results in
a trade-off between lower parameter estimation error and
higher dynamics prediction error, as seen in Fig. 5.

5 DISCUSSION AND CONCLUSIONS

Our approach of augmenting a nominal model affine in pa-
rameters with meta-learned neural network features from
ALPaCA leverages Bayesian regression to adapt to rover
dynamics. We maintain interpretability of the predic-
tions by encouraging orthogonality of the nominal model
features and the meta-learned features, resulting in good
terrain parameter estimates. Our experimental results
demonstrate that the combination of the grey-box nomi-
nal model with a properly regularized black-box neural net-
work model results in achieving the best of predictive ac-
curacy and accuracy in parameter inference. Thus, our pro-
posed approach is a highly flexible and performant system
identification framework that is capable of application to
many systems.

Developing terrain parameter estimation models that
quickly adapt to novel terrains is a step towards greater au-
tonomous operations of rovers, while increasing safety and
efficiency. Directions for future work include incorporating
more sources of information such as vision systems, detect-
ing both sharp and gradual changes in terrain types, test-
ing on physical prototypes, incorporating bulldozing, high
slope, and multipass effects, and developing combined pa-
rameter estimation and adaptive slip prediction models.
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