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ABSTRACT

Scheduling the coverage of a planet by scientific in-
struments on board spacecrafts under observational con-
straints is central in a significant number of current and
future missions for the exploration of the solar system.
In this paper, we describe the components and algorithms
of a software used to study early-phase mission design or
to schedule daily operations of currently in-flight space-
craft. The scheduling problem at hand is usually a large
combinatorial problem. A discretization process is de-
scribed and several ordering algorithms are designed and
compared. Experiments show that high-quality sched-
ules can be produced by approaches combining reasoning
about rolling, coverage and priorities.

1. INTRODUCTION

Scheduling the observation of a planet is a hard combi-
natorial problem in which usually one or several small
sensors on board one or several spacecrafts must observe
a set of large areas, under user-set observational con-
straints, while enforcing hard physical constraints such as
energy or memory. This problem is solved with specific
software designed to provide schedules of observations
maximizing a user-set quality criterion. We will see that
this type of software is currently used for studying the
possibilities offered by specific spacecraft configurations
in early mission design phases and for daily operations of
in-flight spacecrafts.

Compressed Large-scale Activity Scheduling and Plan-
ning (CLASP) is a long-range scheduler [8] for space-
based or aerial instruments that can be modelled as push-
brooms – 1-dimension line sensors dragged across the
surface of the body being observed. It addresses the
problem of choosing the orientation and on/off times of a
pushbroom instrument or collection of pushbroom instru-
ments such that the schedule covers as many target points
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as possible, but without oversubscribing memory and en-
ergy. Orientation and time of observation is derived from
geometric computations that CLASP performs using the
SPICE ephemeris toolkit [1].

CLASP allows mission planning teams to start with a
baseline mission concept and simulate the mission’s sci-
ence return using models of science observations, space-
craft operations, downlink, and spacecraft orbit. This
analysis can then be folded back into many aspects of
mission design – including trajectory, spacecraft design,
operations concept, and downlink concept. The long
planning horizons allow this analysis to span an entire
mission.

As a software, there is a distinction between the CLASP
core and its adaptations to various missions. The CLASP
core is designed to be as generic as possible such that a
minimal effort to derive it is required to take into account
specific needs that are mission-dependent e.g. mod-
elizations of energy or memory or user desires in terms
of outputs and schedule quality. CLASP has already
been derived several times. Mission planning and mis-
sion design inputs on the NASA-ISRO Synthetic Aper-
ture Radar (NISAR), previously DESDynI (Deforma-
tion, Ecosystem Structure, and Dynamics of Ice), mis-
sion were performed with CLASP [4] [8]. It was also
prototyped as a tool for early stage mission planning of
the Mars Odyssey THEMIS instrument [11]. CLASP
has been used to assess achievement of mission science
criteria for the planned Europa Clipper mission and the
JUpiter ICy moons Explorer (JUICE) [15]. More re-
cently, the CLASP adaptation for the ECOSTRESS in-
strument onboard the International Space Station (ISS)
[18] concerned long-term campaigns with changing in-
formation, mass storage unit operations challenges, and
orbit uncertainty. The CLASP adaptation for Orbiting
Carbon Observatory-3 Mission (OCO-3) [12] includes
models and constraints to enforce on geometric visibil-
ity constraints due to occulted zones in the instrument.
Notably, the CLASP core contains the scheduling algo-
rithms which generally remain untouched when a deriva-
tion happen.

The work whose results are presented in this paper is part
of an effort to improve the quality of produced schedules
in the core of CLASP. In this paper, we describe in details
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Figure 1: Physical quantities used in observational geom-
etry constraints. Illumination may be the sun or another
body.

the current and new algorithms for this software. The re-
mainder of this paper is structured as follows. In Sec-
tion 2, we describe the Spacecraft Coverage Scheduling
Problem (SCSP). In Section 3 and 4, we depict methods
to solve the problem, first how it is discretized, reducing
it to a selection and ordering problem, and then several
ordering algorithms. Finally, we compare these ordering
approaches in Section 5.

2. THE SPACECRAFT COVERAGE SCHEDUL-
ING PROBLEM

In this section, we present the Spacecraft Coverage
Scheduling Problem (SCSP). Users of the system start by
submitting science campaigns which have to be satisfied.
A campaign represents a request to map a small area of
the body surface under prescribed conditions. The sci-
entist specifies a polygon on the surface, along with the
instrument mode to be used and optional constraints on
when data can be acquired (e.g., seasonal, local time, rel-
ative position of the sun).

All campaigns are assigned priorities based on prefer-
ences specified by the scientists. For example, map-
ping campaigns are assigned priorities partly based on
how close previous observations have met an assigned
target allocation for the specified data type. In the end,
the generated campaigns and priorities are passed as in-
puts to CLASP. Science campaigns are also associated
with required instrument modes, geometry constraints on
the observation (e.g. left or right looking, ascending or
descending node) and a desired number of observations
over the planning horizon. Note that a single region of
interest may have several campaigns attached to it. There
are various overflight constraints that we do not describe
here. Physical quantities used in these constraints are
shown on Fig. 1.

These campaigns are to be realized over a given planning
horizon by a spacecraft orbiting or encountering the tar-
geted body (e.g. fly-bys). An important distinction exists
between Conventional Observing Spacecrafts (COS) and

Agile Observing Spacecrafts (AOS). In this paper, we ad-
dress the problem of scheduling observations only for the
conventional COS, that is, for spacecrafts for which the
only degree of freedom is the roll axis. Notably, the 3-
axis agility of the agile spacecrafts creates a much larger
search space [10] as it creates multiple viewing opportu-
nities for each single pass over a target.

A spacecraft is defined by a provided ephemeris or trajec-
tory model, a target body, and encompasses a state time-
line for each of the sub-components such as batteries or
solid state recorders. Our notional spacecraft has one or
several body-mounted instruments with specific swaths
modeled as pushbroom sensors. Geometry of the sen-
sors are parameterized by minimum and maximum look
angles as angles rotated about the velocity vector of the
spacecraft from the nadir look vector, looking 90 degrees
off of velocity. Here are some important concepts that we
will use in the remainder of this paper:

• visibility: rectangular projection of the space of pos-
sible swaths on the ground between two instants.

• observation: the resulting data from when an instru-
ment is turned on for a period of time at a specific
roll angle. The covered targets on the ground will
be those which are visible in the swath of the instru-
ment during the period of time.

• instrument mode: an instrument may have several
modes of operation called instrument modes, each
constrained by the state of the spacecraft and dictat-
ing a data-generation rate on the spacecrafts storage
system. An instrument mode may subsume another
one depending on the type of instrument.

The observations stored on the onboard memory must
then be downloaded to ground stations to be finally be
delivered to end users. Projected communications win-
dows between ground stations and spacecrafts are given
as input data. When the spacecraft is communicating
with a ground station, it downloads as much observa-
tions as possible, following a predefined queueing pol-
icy. Scheduling must ensure that it is never oversubscrib-
ing the memory as it would result in losing observations.
The spacecrafts are equipped with batteries and possi-
bly of solar panels for producing power. As instruments
are consuming power, it is paramount that the schedule
ensures the energy level remains above a certain level,
which would otherwise put the spacecraft into a critical
safe mode resulting in operational delays.

The problem consists in choosing the orientation and
on/off times of a pushbroom instrument or collection of
pushbroom instruments possibly distributed among sev-
eral spacecrafts such that the schedule covers as many tar-
get points as possible, but without oversubscribing mem-
ory and energy.

From a scheduling point-of-view, single spacecraft prob-
lem belongs to single-machine scheduling problem with
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sequence-dependent setup effects, job-assembly charac-
teristics, and time window constraints. In our setting,
the scheduling problem is clearly oversubscribed, as sci-
entists always want to observe more than the available
spacecraft capacity and lifetime, which mean that in ad-
dition to the scheduling problem (ordering a set of activ-
ities satisfying the constraints), there is a selection prob-
lem (selecting a subset of the set of activities). Existing
works

3. DISCRETIZATION AND TASK CLUSTERING

To solve the problem, we first discretize it. We oper-
ate a four-step discretization phase during which we: (1)
discretize target space by projecting a regular spacing of
gridpoints on the target body (this will allow to compute
whether an observation covers what portion of a target
region of interest); (2) project the spacecraft swaths onto
the celestial body for the whole planning horizon and dis-
cretize time; (3) intersect the swath, the target polygons
and the gridpoints to discard uncoverable target points;
and (4) proceed to task clustering (as defined by [17]) to
produce a choice of observations to choose from.

3.1. Discretization of target space

First, a regular spacing of gridpoints is projected on the
target body. The resolution of this grid is expressed in
terms of number of points at equator. Three thousand
points at equator will then define a distance of 13.36 kilo-
meters between points.

Then the regions of interest could be either (1) directly
intersected with all spacecraft swaths generating a col-
lection of shards or target visibilities over time or (2)
projected on a regular spacing of gridpoints on the tar-
get body [9]. The former solution gives coverage cal-
culation at resolution limited only by processor memory
and floating-point accuracy, however for scenarios of suf-
ficient planning horizon and/or where the swath may in-
tersect with itself, it becomes computationally expensive
and the latter solution necessary. In this paper, we con-
sider only the second case. Fig. 2 shows how a poly-
gon is transformed in a set of point targets. The output
of this process is given by the set of latitude-longitude
targets. Choosing the appropriate grid resolution should
take into account the smallest targets of a given scenario
as a wrong parameterization might make these targets to
be missed.

3.2. Projection of the swaths and discretization of
time

For each spacecraft, the swath of each instrument mode
(as each instrument mode may have a different swath)

Figure 2: Intersection of a polygon with a regular spacing
of gridpoints on a target body.

Figure 3: Illustration of the discretization steps. Projec-
tion of the spacecraft swath on a geographical region over
the whole planning horizon and breakdown into visibili-
ties of fixed timestep and elimination of uncoverable tar-
gets.

is projected onto the celestial body for the whole plan-
ning horizon at minimum and maximum roll angles. The
space between these two extreme roll angles is known to
be coverable.

Then these swaths are divided into steps of a
parametrized duration (usually 4 or 10 seconds). We de-
fine a visibility as the polygon resulting from this projec-
tion of the swaths of the instruments on the considered
target body for all possible rolling angle during a step.
This process is shown on Fig. 3 for one instrument mode
and two passages (two orbits) over a defined geographical
region.

Note that a visibility contain all the possible roll angles
for the instrument for a timestep. Once this is done, it
is easy to compute which targets are contained in each
of these visibility windows. All targets not contained in
any visibility window are marked as uncoverable and dis-
carded.
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3.3. Task clustering

Task clustering is the procedure that will generate a set
of observations for each spacecraft from the set of visi-
bilities previously produced, restricting again the search
space.

First, we restrict start and end times of observations to
start and end times of visibility windows. The only re-
maining decision variable here is the roll angle of the ob-
servation. For each visibility. we will generate several
observations with several rolling angles. Before describ-
ing how we generate these roll angles, we will describe
how we handle the roll angle sequence constraint.

Angle least-commitment Slewing from one roll angle
to another takes some time. Also, we have restricted start
and end times of observations to start and end times of
visibilities. This avoids any search for target clustering
in the along-track axis but it presents an inconvenience:
because each observation has a given roll angle, any two
consecutive observations without the exact same roll an-
gle are not compatible. In other terms, any roll transition
is taking at least one timestep to be completed. But the
roll angle is only constrained by the targets the space-
craft is trying to observe. The swath of the instrument
might be larger than the geographical area we are trying
to observe. In other terms, observing a given set of target
might be done with not only one roll angle but an interval
of roll angles.

That is why a least-commitment strategy is used so that
roll angles of observations are not definitely set before
the end of the search process but refined. When an ob-
servation is inserted in the schedule, the intervals of the
neighboring observations are propagated with regard to
slewing transition times. If an the interval of an already-
inserted observation becomes empty, it means that both
observations are incompatible. Now we can describe tar-
get clustering methods.

Clustering The objective of this step is to produce a
set of observations for a given visibility. For each visi-
bility, the search space is the interval of roll angles. Note
that for each visibility that can cover at least one target,
several observations may be generated, but they are in-
compatible by definition, at most one can be inserted in
the schedule during scheduling. Two observationsover
the same visibility are different if they do not cover ex-
actly the same set of targets. It is theoretically possible
to explore all possible observations for a given swath, but
for the probable large number of visibilities and targets,
it is computationally hard. The goal is then to accurately
sample the space of roll angles. We use two methods:

Target-centric clustering One observation is generated
for each target in the visibility. The central roll an-
gle of the observation is set at the target angle in

the visibility. An observation generated with this
method might physically cover more than one tar-
get, but the flexibility interval is set to include only
the considered target and thus remain very flexible
while ensuring that all coverable target have at least
an observation.

K-roll clustering The interval of roll angle is divided in
k parts with k for a given instrument mode to cover
at least the whole visibility space. For each part,
an observation is generated. The highest k is, the
more overlaps between observations there is. Com-
pared to the target-centric approach, this approach
generates more covering possibilities. On Fig. 4,
while the two approaches both generate three obser-
vations, only the k-roll clustering produces an obser-
vation covering t2 and t3. But the resulting flexibil-
ity intervals of these observations are smaller, thus
restricting compatibility with observations after and
before.

All algorithms will use k-roll clustering if not mentioned
otherwise.

Figure 4: Comparison between target-centric and k-roll
clustering for 1 visibility covering 3 targets. Colored ob-
servations cover at least one target.

4. ORDERING APPROACHES

In the previous section, it has been shown how a set of
observations can be built from the problem data by dis-
cretizing time and roll angles. Solving the problem con-
sists now in selecting a subset of observations maximiz-
ing the optimization criterion while satisfying the con-
straints. In this sections, we present several greedy algo-
rithms to achieve that.

Physical constraints concerning resources such as slew-
ing, energy or memory are always enforced during
search. All the algorithms use a timeline-based modeling
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framework, an approach previously explored in the space
domain [2] [3] [16], in which state and resource values
are represented by a fully ordered sequence of values.
A resource timeline is created for each resource and ev-
ery time an activity is consuming a resource, the timeline
is incrementally updated and propagated. When needed,
one can check whether it is possible or not by inspecting
the potential effect on all timelines. Actually, none of the
algorithms we present are never allowing a constraint to
be violated, the current schedule always satisfy the con-
straints.

4.1. Greedy-in-time scheduling algorithm
(PRIOTIME)

The most straightforward algorithm (our baseline) goes
through all targets ordered by campaign priority and for
each target, tries to schedule it as much as possible (until
the required number of occurrences is attained). For each
occurrence, the algorithm looks at all potential observa-
tions ordered by start times and schedule the first one.
Because the algorithm goes through targets by campaign
priorities, it enforces strict priority hierarchy: a given
priority target will always be favored against any set of
lower-priority targets. However, it is myopic in terms of
coverage or rolling sequencing as it selects observations
only by earliest start times.

4.2. Greedy-in-coverage scheduling algorithm
(COVERAGE and K-COVERAGE)

We have seen that the baseline algorithm does not really
consider coverage, that is the number of targets covered
by observations, and remains myopic in this sense. We
introduce a new greedy algorithm that computes a cov-
erage quality heuristic for each observation, aggregating
the value of all targets covered by it with the roll angle
necessary to observe them, and schedules the best first.

Compared to the previous algorithm, this algorithm
changes the decision-making hierarchy as it reasons on
observations and not only targets. It reasons on the roll
angle resource and tries to favor high-coverage observa-
tions that will not prevent subsequent or previous obser-
vations to be inserted in the schedule.

There are two variants for this algorithm, one using the k-
roll clustering and one using the target-centric clustering.

4.3. Longest strip greedy algorithm (STRIP)

The previous algorithm tries to minimize the consump-
tion of the roll angle resource by observations at indi-
vidual level. But it does not reason over sequences of
observations. As slewing is one of the main limiting fac-
tor when scheduling, a natural way of thinking about this
is to build strips of consecutive observations that would

cover large areas without any variation in slewing. A strip
is defined as a sequence of observations without gap for a
given spacecraft. The heuristic value of a strip s is com-
puted as the sum of the heuristic values of its observa-
tions. Then the algorithm schedules strips by decreasing
order of heuristic score. Note that compared to the previ-
ous approach, this method is only adding to the search
space of observations as it also considers sequence of
length 1.

4.4. Greedy maximum-contention algorithm
(CONTENTION)

In a highly constrained scheduling problem, a common
approach is to analyze conflicts between tasks and to
schedule most constrained task first, those which have
the least opportunities to be satisfied during the plan-
ning horizon. In constraint programming, this is called
the Minimum Remaining Values heuristic (MRV) [7] and
is used when choosing the order in which the decision
variables will be assigned. The decision value with the
smallest remaining domain is chosen by this heuristic.

Targets are to be covered by observations. As the number
of spacecrafts orbits are limited, there is a limited number
of observation opportunities to cover a given target. But
measuring the pure opportunities is not enough. There are
targets that are very isolated geographically from other
targets, which will be relatively easy to schedule even for
a small number of opportunities. On the contrary there
are areas packed with targets, leading to concurrency be-
tween observations for all these targets. Even a target
with several opportunities will be hard to schedule in this
case. This is why it is necessary to combine these aspects
in a measure as it has been already highlighted in [5].

This algorithms greedily schedules observations with the
highest contention.

4.5. Chronological slewing optimization algorithm
(CHRONO)

When trying to optimize instrument slewing, the ap-
proach in section 4.2 computes a local metric penalizing
observations slewing far from the swath center of the in-
strument. The approach in section 4.3 is another extreme
case by removing any slewing from long sequences of
observations.

It has already been shown that the slewing optimization
problem can be approximated to finding the longest path
in a Directed Acyclic Graph (DAG) where nodes are
made of observations at different timesteps and arcs rep-
resents the physical possibility for the spacecraft to go
from one slewing angle to another [6]. But this approach
considers that observations have fixed roll angles. As
seen in Section 3.3, in our case, roll angles of observa-
tions are set as late as possible to maximize compatibility
between neighboring observations. Each observation has
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an interval of roll angles. In the original DAG, an arc rep-
resents the compatibility between two roll angles which
is easy to compute with the roll rate. And more impor-
tantly it is a transitive relation between observations.

The number of paths is lower-bounded by nt, with n the
number of observations at each timesteps and t the num-
ber of timestep, thus making this approach intractable
even for modest depths.

However, such an approximation can be used in a chrono-
logical approach as a lookahead heuristic to make a more
informed choice, taking into account few subsequent ob-
servations that can be inserted in a near future. In a
chronological algorithm , progression goes from the be-
ginning to the end of the horizon and selects observa-
tions to insert at each timestep. The first p observation
of the best n-sequence at a given instant are scheduled,
with n = 4 and p = 2 in our case.

5. EMPIRICAL EVALUATION

In this section, we evaluate the performance of each pro-
posed algorithms on a realistic scenario.

5.1. Parameters

The following parameters are set for every run. Timestep
(see Section 3.1) is set at 10 seconds. The scheduling
horizon duration is set to 12 days as it is the revisit period
of the spacecraft we consider. The grid (see Section 3.1)
is set to be of 3000 points at equator which makes a total
of 317417 gridpoints for Earth.

5.2. Spacecrafts

There are two different constellations based on a space-
craft with characterics close to the NASA-ISRO Syn-
thetic Aperture Radar (NISAR) mission spacecraft [14]
which has a heliosynchronous 98° inclined Earth orbit
and a 12-day repeat period. We consider that it only
has 1 instrument with 9 independant modes (no mode
subsumes another mode). Its orbit and instrument size
results in a 240-km swath with an angular visibility of
12° (30-42°). The two studied constellations are constel-
lation ONE, which is made of one spacecraft, and con-
stellation SIX, which is made of six identical spacecrafts
whose orbits are offset by two days each. In other words,
if spacecraft 1 nadir is flying over a point on earth at the
beginning of the scheduling horizon, spacecraft 2 will fly
over the same point exactly two days after with the same
orbital position, spacecraft 3 four days after, and so on.

The number of resulting visibilities for each constella-
tion is 103681 and 622080. Onboard memory is limited,
data production is associated with each observation and

no downlink is possible during the horizon which makes
the resource clearly oversubscribed and a limiting factor.
As rolling is one of the main limiting factor, we use two
roll rates to evaluate the impact on schedule quality: rate
LOW which is 0.2 degrees per seconds, which makes the
maximum roll transition to be 6 timesteps, 1 minute, and
rate HIGH which is 12 degrees per second, which limits
rolling to one timestep in this case as the whole angular
range is covered in one timestep

5.3. Campaigns considered

We evaluate algorithms against one simple scenario
(more are shown in the upcoming journal version of
this paper and show the same tendencies in results), the
Landmass scenario, which is taken from the studies to
address the Surface Deformation and Change part of the
2017 Decadal Survey [13], and simplified to suit our
need. This scenario has only one priority, and specifies
that the whole Earth landmass should be observed. It con-
tains 88226 targets.

5.4. Chosen criterions

For evaluating the algorithms, we use a quality criterion
aggregating coverage and campaign priority, whose value
is between 0 and 1. To try explaining the results, we also
report for each scenario, configuration and algorithm: the
runtime decomposed in pre-ordering runtime and order-
ing runtime, the mean roll transition angle between sub-
sequent observations in the schedule, the number of ob-
servations inserted in the schedule, and the mean number
of targets in the observations in the schedule, the target
density.

5.5. Comparison of the algorithms

CLASP is developed in C++. Experiments were ran on
a Apple MacBook Pro equipped with an Intel Core i9
processor at 2.9GHz and 32GB of DDR4 ram.

When observing the quality of produced schedule on
Fig. 5, we see that the roll rate has, as expected, an impact
on the performance. As the spacecraft loses timesteps to
roll from observation to observation and that taking ob-
servation during rolling is not permitted in this setting,
it can be seen on Fig. 6 that schedules for configurations
with a low roll rate indeed produce less observations than
schedules for configurations with a high roll rate, regard-
less of the ordering algorithm. This result is also unaf-
fected by the target density.

In all configurations, the best quality is achieved with the
CHRONO approach which optimizes rolling path separately
for each spacecraft. It combines a high target density (see
Fig. 6) with a low mean transition roll angle (see Fig. 7)
but at a computational cost more than 4 times higher than
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Figure 5: Schedule quality by configuration and algo-
rithm for scenario Landmass

Figure 6: Number of observations in the schedule and
mean target density per observation by configuration and
algorithm for scenario Landmass

other approaches. As expected, developing the rolling
paths at each timestep is extremely time and memory-
consuming(see Fig. 8).

Surprisingly, the COVERAGE algorithms performs better
than the K-COVERAGE approach. As expected the latter
has a higher target density as it finds the observations
containing the most targets because of its systematic sam-
pling of the roll angle space. But, at the same time, it is
able to insert less observations in the schedule, probably
because of longer roll transition. By aggregating more
targets in the observations, this algorithms reduces the
roll flexibility (see Section 3.3) and thus prevents from
accommodating with other future insertions.

The PRIOTIME algorithm performs better than STRIP and
CONTENTION while being the fastest approach. It is able
to insert a large number of observations in the sched-

Figure 7: Mean roll transition per configuration and algo-
rithm for scenario Landmass

Figure 8: Processing time per configuration and algo-
rithm for scenario Landmass

ules. It can be noted that its mean roll transition is low,
probably because its target-centric clustering allows for
a greater angle flexibility. CONTENTION bad performance
can be linked to the fact it does not consider rolling at
all. The STRIP approach is the least-performing approach
with this scenario. As expected, it has the lower mean
transition roll angle of all approaches which lead to hav-
ing second highest number of observations in the sched-
ules, but with the least target density. This shows how
maintaining a balance between all these parameters is im-
portant.

6. CONCLUSION

In this paper, we have presented a singular spacecraft
mapping problem involving observational constraints
arising in a variety of missions. A general multi-step dis-
cretization approach has been described to deal with the
geometric constraints and possibly long planning hori-
zon. Several ordering algorithms have been considered
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and experiments have shown that in order to produce
high-quality schedules, straigthforward approaches opti-
mizing only one aspect of the problem, such as priority or
rolling, are not sufficient and require algorithms combin-
ing reasoning on coverage, priority and rolling aspects.
This approach can improve the quality of resulting sched-
ules, and thus the overall science return achieved in such
missions.
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