
USING FLEXIBLE EXECUTION, REPLANNING, AND MODEL PARAMETER UP-
DATES TO ADDRESS ENVIRONMENTAL UNCERTAINTY FOR A PLANETARY 

LANDER 
Virtual Conference 19–23 October 2020 

Daniel Wang1, Joseph A. Russino1, Connor Basich1, Steve A. Chien1 
1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive Pasadena, California 91109, 

USA, E-mail: firstname.lastname@jpl.nasa.gov 
 
ABSTRACT 

When planning in unknown environments, a planner 
must ensure robustness to unknown phenomena and 
manage unpredictable variation in execution. Produc-
tivity in the face of these challenges requires an inte-
grated approach to planning and execution that is ca-
pable of reacting to variation while still maximizing 
overall utility. We examine this problem in the context 
of the Europa Lander mission concept. We propose a 
planning and execution framework that responds to 
feedback using three techniques: (1) flexible execu-
tion, (2) periodic replanning, and (3) online model pa-
rameter and utility updates. The efficacy of each of 
these techniques is examined through simulation of the 
Europa Lander concept, showing higher utility 
achievement compared to baseline approaches. 

1 INTRODUCTION 

When integrating AI planning into robotic applica-
tions, planners are consistently challenged by variation 
in execution and uncertainty in the quality of our envi-
ronment models. In space-based applications, this is 
especially challenging because the environment is 
largely unknown, reducing the quality of our a priori 
models of the world. To address these problems, we 
describe an integrated approach to planning and exe-
cution in an unknown, unpredictable environment.  
We use a hierarchical task network (HTN) that defines 
activities and their associated dependencies, and we 
create plans using this mission representation. To 
drive planning goals, we assign utility to tasks that 
complete those goals, and generate a plan that maxim-
izes utility while obeying each task's constraints. At 
execution time, we use flexible execution and re-plan-
ning to react to uncertainty and variation, and to com-
pensate for an approximate world model. Finally, we 
accept model parameter updates (such as expected task 
energy usage and estimated task utility) during execu-
tion time to incorporate execution feedback and gained 
knowledge and use these updated models to optimize 
plan quality. 

We examine the problem in the context of a proposed 
mission concept to perform in-situ analysis of samples 
from the surface of the Jovian moon Europa [1]. Un-
like prior NASA missions, a priori domain knowledge 
is severely limited and uncertain, and communication 
with Earth is limited by long blackout periods (about 
42 hours out of every 84 hours). Consequently, a suc-
cessful mission requires a planning and execution 
framework that is highly efficient, robust to unprece-
dented levels of uncertainty, and still capable of max-
imizing its overall utility. On the other hand, the Eu-
ropa Lander concept has a fairly rigid definition of 
what actions the lander must perform in order to pro-
duce utility. Our planning algorithm leverages this do-
main-specific knowledge by making use of a hierar-
chical task network and using heuristic-guided search 
to examine various task combinations to maximize 
utility. The ultimate goal for a Europa Lander would 
be to analyze surface material and communicate the 
resulting data products back to Earth. To reward ac-
complishment of these goals, we assign utility to tasks 
such as sample excavation and seismographic data col-
lection, but do not receive this utility until the lander 
communicates the data down to Earth. In the HTN 
framework, this means that tasks in a hierarchy pro-
duce utility only if the full hierarchy is executed. 

We integrate planning and execution in order to better 
react to environmental variation, moving away from 
fixed time and energy budgets to generate less con-
servative, more successful plans. To do so, we use 
MEXEC, an integrated planner and executive first 
built for NASA's Europa Clipper mission [2]. To ac-
count for approximate world models, our framework 
replans on a periodic basis to recalibrate its plans with 
reality. Finally, we integrate a module that continually 
estimates task parameters and goal utilities during ex-
ecution in response to new information. We update the 
priors on the relevant model parameters accordingly, 
and subsequently replan to produce a more accurate 
plan. This further improves plan quality and utility 
gain. 
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We present this planning and execution framework in 
a simulated Europa-like mission and compare it to 
three baseline approaches similar to those used in prior 
missions: a static plan [3], flexible execution with no 
replanning, and flexible execution with replanning but 
without online parameter update [4]. We explore the 
value of flexible execution, replanning, and online 
model reparameterization, and examine their effect on 
utility in these scenarios. We present empirical results 
of the efficacy of each technique over the others, and 
discuss further techniques and implementations that 
may continue to improve on these baselines into the 
future. 

2 PROBLEM DESCRIPTION  

The primary goal of the Europa Lander mission con-
cept is to excavate and sample the surface, analyze the 
sampled material for signs of biosignatures, and com-
municate that data back to Earth [1]. Additionally, 
there are secondary objectives to take panoramic im-
agery of the Europan surface and collect seismo-
graphic data. Lander operations are generally limited 
to the accomplishment of these two overarching goals. 
This provides significant structure to the problem, 
since the concept mission clearly defines the sequence 
of actions required to achieve these goals. 

As a minimum requirement, the lander should exca-
vate a trench in the Europan surface, collect three sam-
ples from that site, analyze those samples, and return 
that data to Earth. The basic requirements of a mission 
would require only a single site to be excavated. How-
ever, there is value in excavating additional sites, be-
cause the material at different sites may possess differ-
ent properties. In addition, the lander may choose to 
resample the same location, for example, in order to 
verify the discovery of a biosignature at that location. 
In the baseline mission concept, all three of the 
lander's samples are chosen from the same target. Note 
that after the first site is excavated, no further excava-
tions are needed to sample from that trench; all three 
sampling activities can share a single excavation site. 
After excavation and sample collection, samples must 
be transferred into scientific instruments that analyze 
the material and produce data products. Then, for a 
mission to achieve any actual utility, those data prod-
ucts must be communicated back to Earth. Because 
communication is difficult and energy intensive, the 
lander may choose to compress data lossily if the ex-
pected utility of this action is higher. 

In addition to sampling tasks, the lander may engage 
in seismographic data collection and period panoramic 
imagery tasks. These are considered lesser goals, with 
lower utility associated with their completion. As 

such, the data products that these tasks generate are 
considered to have lower value. However, these tasks 
also involve no surface interaction, and have less un-
certainty associated with them as a result. 

It is important to note that utility is only achieved when 
data is downlinked back to Earth. This is true for both 
the sampling and seismograph/panorama tasks. Some 
excavation sites or sampling targets may provide more 
utility than others if, for example, one of those targets 
has a positive biosignature and the other does not. 
However, regardless of the quality of the material that 
the lander samples, no utility is achieved unless that 
data is communicated. This dynamic means that while 
potential utility is generated during the sampling and 
analysis phases, it is only realized by completing rele-
vant communication tasks.  

The Europa Lander mission concept is also con-
strained by a finite battery that cannot be recharged. 
Battery life is a depletable resource, and the lander 
must use its energy as efficiently as possible. Each task 
saps energy from the battery, and our algorithm must 
plan accordingly to maximize utility in face of this 
constraint. In addition to this challenge, the surface 
characteristics of Europa are uncertain, and any prior 
mission model that is generated before landing is sure 
to have inaccuracies. In particular, the energy con-
sumption of the excavation and sample collection 
tasks is largely unknown. There is also significant var-
iation in the utility of any given sample, since the value 
of sampling a given target on Europa depends on 
whether the material is scientifically interesting, e.g. 
whether a biosignature is present. 

3 APPROACH 

3.1 Problem Model 

We model this problem using a hierarchical task net-
work (HTN) to compile the domain-specific 
knowledge of the dependency structure into the task 
network. HTNs have been used successfully in indus-
trial and other real-world applications to improve the 
tractability of planning problems in systems such as 
SHOP2 [5] and SHOP3 [6]. In an HTN, hierarchical 
tasks are decomposed to a set of subtasks. We refer to 
the higher-level tasks as “parent tasks”, and refer to 
their children as “subtasks”. Parent tasks may decom-
pose into a number of different sets of subtasks; we 
refer to each of these sets as a potential “decomposi-
tion” of that parent task. Finally, we refer to tasks with 
no decompositions as “primitive tasks”. These primi-
tive tasks represent tasks that the lander can be directly 
commanded to perform. 
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/Decompositions provide a number of benefits to our 
planning approach, significantly reducing plan search 
space. In addition, we can treat all subtasks of a parent 
task as a singular block for planning purposes. The 
lander only achieves utility after completing an entire 
sequence of sample, analyze, communicate. Decom-
positions allow us to treat “sample, analyze, communi-
cate” as a single unit and schedule them accordingly. 
Thus, our model intrinsically biases the lander against 
planning to sample without a corresponding commu-
nication task. This may not always be optimal, if for 
example, excavation and sampling is cheap and com-
munication is very expensive. However, for our prob-
lem, energy use is dominated by the excavation and 
sampling tasks, and the decomposition paradigm ef-
fectively encodes this domain-specific knowledge into 
our planning routine. 

  

Figure 1:  Example set of two possible decomposi-
tions for a “Sample Site” task. 

There are three main parent task types in our mission 
model. The first is a Preamble, which consists of post-
landing initialization and other one-time initialization 
tasks. Second are sampling tasks. These consist of ex-
cavation, sample collection, transfer, analysis, and 
communication tasks. Excavation can take place at 
one of two excavation sites, and may be skipped if an 
excavation has previously occurred for the specified 
site. For collection tasks, the lander may choose be-
tween four collection targets: two for each excavation 
site. It may revisit a target that has already been sam-
pled, still obtaining utility for a repeat sample. Then, 
for communication tasks, the lander may choose to ei-
ther communicate raw data or compressed data. Fi-
nally, there are Seismograph/Panorama tasks, which 

consist of seismographic data collection, panoramic 
image collection, and communication of that data. 

In our problem, we assign utility primarily to two ac-
tivities: sampling and communication. We assign util-
ity to sampling tasks in order to differentiate between 
sites that may be more or less interesting, depending 
on the scientific value of the site. Communication util-
ity is larger, and remains constant. For the communi-
cation tasks, we assign higher utility and cost to tasks 
that communicate raw data, compared to those that 
communicate compressed data. This simulates a Pa-
reto optimal “menu'' of communication options. The 
combination of sampling and communication utilities 
represents the overall utility of a parent sampling task. 
Seismograph/panorama utility is driven solely by 
communication utility. 

3.2 Planning Algorithm 

Our planning algorithm uses the HTN model of the 
Europa Lander problem to build a search graph, with 
nodes holding partial plans and edges holding task de-
compositions. We perform a heuristic-guided branch 
and bound search on this graph and select the best plan 
explored. The algorithm consists of four phases: pre-
processing, initialization, exploration, and plan selec-
tion. 

First, a pre-processing step flattens task decomposi-
tions into a single layer, such that parent tasks decom-
pose into a chain consisting only of primitive, non-hi-
erarchical subtasks. This allows us to assign utility and 
energy cost directly to each decomposition, because its 
breakdown into disparate subtasks has already been 
performed. Then, each decomposition's utility is the 
sum of each of its subtasks' utility. The same is true for 
energy cost. This step is performed once per domain 
model, offline. Preprocessing has exponential runtime 
in the worst case, and future work may require addi-
tional search in decomposing tasks as well as planning 
them. 

Our search graph consists of nodes containing partial 
plans and their associated energy cost and utility. A 
node's cost is simply the sum of cost of each task 
scheduled in the node's plan; the same goes for utility, 
though future work may take joint utility into account. 
In the initialization phase, the algorithm creates a sin-
gle node containing an empty plan, with utility and 
cost 0. Then, it iterates through all task decomposi-
tions created in the pre-processing phase in order to 
generate the set of edges that may be followed from a 
given node. To finish the initialization phase, the algo-
rithm populates an exploration queue with (node, 
edge) pairs, pairing the singular initial node with all 
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edges in the collection. At the end of the initialization 
phase, then, the exploration queue consists of all task 
decompositions paired with the empty plan. 

In the exploration phase, the planner pops the top of 
the exploration queue to get (P, T), where P is a partial 
plan, and T is the list of primitive subtasks comprising 
a task decomposition. It then attempts to schedule all 
tasks in T given the state of the world produced by fol-
lowing the plan P. If the tasks cannot be scheduled, it 
moves on to the next exploration queue item. If the 
tasks can be scheduled, i.e. their preconditions are met 
and their impacts do not produce any conflicts, a new 
graph node is created. This node contains a new plan 
P’, the resulting plan after adding the tasks in T to P.  

After creating this plan node, the planner iterates 
through the edge collection again, pairing the new plan 
with all possible tasks. In this iteration, it ignores tasks 
that have already been scheduled in the plan, so as to 
avoid duplicates. The algorithm also filters these pairs 
to ensure that the total cost 𝑃. 𝑐𝑜𝑠𝑡 + 𝑇. 𝑐𝑜𝑠𝑡 < 𝑀, 
where M is the max energy cost allowed (equal to the 
current battery charge of the lander). This bounds our 
search, and we further bound the algorithm's search by 
limiting the number of exploration candidates exam-
ined. Note however that this bound maintains optimal-
ity if we allow the algorithm to expand the entire 
space. After filtering, these pairs are added to the ex-
ploration queue, and the next queue item is examined. 
The exploration queue is a priority queue, with (plan, 
decomposition) pairs ordered by a heuristic value to 
improve search results. Given a plan, decomposition 
pair (P, T) we assign the heuristic value ℎ(𝑃, 𝑇) 	=
	𝑃. 𝑢𝑡𝑖𝑙𝑖𝑡𝑦	 +	𝑇. 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑇. 𝑐𝑜𝑠𝑡⁄ . Finally, in the plan 
selection phase, the algorithm iterates through all can-
didate plan nodes, selecting the plan with the highest 
utility. Ties are broken according to energy cost, 
where a lower energy cost is preferred. 

3.3 Execution 

Planning and execution are integrated in our approach, 
in order to respond to variation and therefore better op-
timize overall utility achieved. We use MEXEC for 
flexible execution, which allows us to make small plan 
modifications to task start times and resource con-
sumption without failing [2]. We maintain task models 
that have impacts on certain resources, e.g. each task 
has some negative impact on an energy resource, rep-
resenting its energy usage. As is common in robotics, 
variation during execution time may prove these mod-
els to be incorrect. Thus, during execution, we update 
our resource timelines to match the values measured. 

In addition to updating the raw value of modeled re-
sources, we also update task impact models with the 
information gained during execution. This is espe-
cially important in the sampling tasks. There exists 
significant uncertainty in our model of interactions 
with the Europan surface, so we may discover that col-
lecting a sample is much more difficult than previ-
ously expected. In this case, we rely on updating our 
model of the sample collection task to better represent 
what has been discovered. By doing so, we are able to 
replan with a better understanding of the task, thereby 
creating plans that are more likely to succeed. In this 
paper, we explore only one online parameter update 
policy, where the latest energy use value is used to up-
date the task model, i.e. our prior estimate is ignored 
after gaining some posterior knowledge. 

We also update our utility estimation for certain tasks. 
Our task network has a prior estimate on the utility of 
collecting surface samples that is uniform across all 
targets. At execution time, the information discovered 
may drastically alter this estimation. For example, af-
ter sample analysis, the lander may discover a biosig-
nature at target A, but nothing at target B. Our frame-
work would then update its task models accordingly, 
rewarding sample collection tasks at target A with 
much higher utility than tasks at target B. Online util-
ity update thus allows us to redefine our goals and the 
value of each goal according to the information ob-
tained at execution time. 

Tying all of this together is periodic replanning on a 
fixed cadence. This allows us make use of online state 
updates, model updates, and utility reassignments dur-
ing execution time, thereby creating plans that achieve 
higher overall utility. Our framework measures the 
value of each resource being modeled, and assigns that 
value to the given resource in the planning model. 
Then, when replanning, the planner uses the actual, 
measured value of the state, rather than the previous 
predicted value. This allows us to update our goals ac-
cording to what is realistically possible given the cur-
rent state measurements of the system. In future work, 
we may replan in response to events such as the detec-
tion of significant error in resource modeling [7]. This 
would minimize replanning, such that it would occur 
only when necessary. 

4 RESULTS 

We examine the performance of four potential plan-
ning and execution frameworks in a simulated Europa 
Lander problem. As a baseline, we examine the per-
formance of a static plan, executed with fixed time 
points and energy impacts. We refer to this strategy as 
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/“none”, as it uses none of the flexible execution tech-
niques we describe. While this strategy is extremely 
basic, it is also the baseline for many NASA missions, 
including the Curiosity rover [2][8]. With this strategy, 
we generate a static plan and attempt to execute it, 
without any flexibility. Because we lack flexibility, the 
static plan must contain margin such that tasks are un-
likely to overrun their allotted resource budgets. If any 
overruns do occur, we terminate the execution of the 
plan. 

We refer to the second strategy as “flexible”. With this 
strategy, we allow flexible execution of a plan using 
MEXEC, but do not replan during execution. Because 
execution is flexible, we can reduce the amount of 
margin in our task models, and rely on our executive 
to handle resource overruns accordingly. In a real ap-
plication, this would be analogous to placing an exec-
utive on a spacecraft, but only allowing it to run a plan 
generated on the ground. 

The third strategy is “replan”, where we allow for re-
planning during execution, but do not perform any 
model parameter or utility updates. At a periodic ca-
dence, we run the planning algorithm using updated 
resource values, but we do not incorporate any infor-
mation gained about task model parameters or utility. 
This baseline is comparable to expected operations on 
the Mars 2020 mission [4]. 

Finally, the “model_update” strategy incorporates all 
techniques described in the approach, executing plans 
flexibly, replanning on a regular cadence, and updat-
ing task model parameters and goal utilities online. 
Specifically, we estimate and update parameters for 
the sample collection task. This task is particularly im-
portant because it uses significant energy and is re-
peated many times in the plan. In addition, as a task 
that interacts with the Europan surface, our model of 
the task is likely to be extremely uncertain. 

To evaluate the efficacy of these approaches, we sim-
ulate execution on a Europa Lander problem. In this 
simulation, we vary the energy usage of each task, 
drawing from a normal distribution centered around 
the prior estimate in the input task network. In addition 
to this variation in energy, we vary the utility of differ-
ent sampling targets. We draw this value from a high-
variance normal distribution, again centered around 
the prior estimate in the task network. Finally, to sim-
ulate uncertainty in our model, for the sample collec-
tion task, we draw energy use from a normal distribu-
tion centered around a mean that does not match the 
task network input. Instead, the mean is drawn from 
another normal distribution, centered around the input.  

Figure 2. Average utility achieved by the four plan-
ning and execution strategies applied to simulated 

Europa Lander scenarios. 

 

This means that the energy distribution expected in the 
world model may not match the true distribution. 

The results of our experiment are shown in Fig. 2. 
Each strategy was simulated for 50 runs, recording the 
average utility achieved by the execution trace. We 
find that the “none” strategy's static plan is severely 
limited by the margin required to ensure that the plan 
can be executed without resource overruns. This mar-
gin is two standard deviations above mean, and limits 
our plan to only sampling a single time. Even with this 
margin, we find that resource overruns still occur, 
which result in no utility achieved. The static approach 
achieves a median utility of 1585 and mean of 1325. 

Allowing flexible execution with the “flexible” strat-
egy improves this significantly, bumping median util-
ity gain to 3911, and mean utility to 4195. This bene-
fit comes primarily in the removal of the margins. 
With an onboard executive, our plans can expand to 
the full set of 3 samples, which greatly increases the 
ceiling for our utility gain. Fig. 3 contrasts the plans 
of the “none” and “flexible” strategies at a high level. 
These plans were selected from execution traces of 
the experiment. While flexible execution is very val-
uable, because we do not replan, we find that the util-
ity achieved by this strategy varies widely. Plans are 
fairly brittle to unexpected energy loss, often result-
ing in missing the final communication step in the 
plan. This proves disastrous for utility gain, because 
the work required to generate the final data product is 
essentially wasted. Thus, we see a wide spread of 
overall utility in this strategy, with two main clusters:  
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/Figure 3. Sample high-level plans for the none and 
flexible planning/execution strategies. 

one for traces where all three samples are successful, 
and one for traces where one sample fails. 

With the “replan” strategy, we allow replanning, 
which significantly reduces the brittleness of our plans 
to variation. We find that this reduces the variance of 
utility achieved, but does not significantly affect the 
overall utility gained (median 4185, mean 4027). Fig. 
4 shows a sample plan with this strategy. Because we 
react to variation in energy, the planning algorithm be-
gins to favor compressed data as a way to save on en-
ergy while still achieving sampling goals. However, 
this also cuts down on potential utility. Because the 
flexible strategy is so optimistic, it is bimodal in utility 
gain, either achieving close to optimal, or falling far 
short. The replan strategy tends toward a middle path, 
with a lower variance of moderate utility plans. This 
variance reduction is useful for the Europa Lander 
problem, since the cost of failure is significant. 

Finally, the “model_update” strategy results in a me-
dian utility gain of 4372 and mean of 4327. The most 
significant difference in the full strategy is the online 
re-weighting and re-parameterization of different sam-
pling tasks. Depending on what is discovered at a 
given sample target, we update the utility of the sam-
pling action corresponding to that target. This moti-
vates the lander to sample in other locations if a par-
ticular target is found to be less valuable or more costly 
than expected. Because the planner can take advantage 
of this newfound knowledge, it is able to harvest 
greater utility from sample targets. In our sample plan, 
we find that this case occurs in practice: After discov-
ering that sampling target A is less interesting or more 
difficult than originally predicted, the lander chooses  

/Figure 4. Sample   high-level   plans   for   the   re-
plan and model_update planning/execution strategies 

to swap targets to target B. It is thus able to make better 
use of energy and more effectively harvest utility, 
compared to methods that do not estimate parameters 
online. 

5 RELATED WORK 

Onboard planning and execution are of great interest 
to the space domain.  The Remote Agent was an archi-
tecture for onboard planning and execution addressing 
remote autonomous operation with deadlines, resource 
constraints, and concurrent activities [9]. The Remote 
Agent flew for 48h in 1999 on the Deep Space One 
spacecraft using a batch planner that took hours on a 
RAD6000 CPU to generate a temporally flexible plan 
that was then used by a reactive executive controller 
[10] to provide robust plan execution. The planner 
used a refinement search paradigm [11] to construct a 
temporally flexible plan but did not consider utility in 
plan generation and did not perform continuous re-
planning due to the computational expense and long 
planning time (indeed the replans were scheduled in 
the prior plan). 

The Earth Observing One (EO-1) spacecraft [12], 
which flew for over 12 years from 2004-2017, was de-
signed specifically to react to dynamic scientific 
events. Planning was performed by the CASPER plan-
ning software [13], which took on the order of 10s of 
minutes to replan but did not produce temporally flex-
ible plans. To address this, the onboard executive 
(SCL) was able to flexibly interpret the execution of a 
plan to handle minor execution runtime variations.  
The flight and ground planners [14] both used a do-
main specific search algorithm that enforced a strict 
priority model over observations for limited model of 
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utility. This scenario is similar to that proposed in this 
paper, in which the lander must react to dynamic 
events and observations in order to maximize its util-
ity, while still adhering to both mission and spacecraft 
constraints. Recently, the Intelligent Payload Experi-
ment (IPEX) also successfully used the CASPER plan-
ning software to achieve its mission objective, further 
validating the efficacy of using onboard replanning to 
handle dynamic events and observations during oper-
ation even when the plans are not temporally flexible 
[15]. 

The M2020 Perseverance rover also plans to fly an 
onboard planner [4] to reduce lost productivity from 
following fixed time conservative plans [8]. Like the 
planning approach we propose in this paper, the 
M2020 planning architecture also relies on reschedul-
ing and flexible execution [7], ground-based compila-
tion [16], heuristics [17], and very limited handling of 
planning contingencies [18]. However, many charac-
teristics of the M2020 mission are fundamentally dif-
ferent from the mission concept we consider here, such 
as the lack of reliable a priori model parameters, the 
inability to recharge the battery, and the long commu-
nications blackout time windows incentivizing greater 
mission autonomy. 

6 FUTURE WORK 

In our planning, we consider only one dimension of 
decision theory: utility. While we react to uncertainty 
at execution time, we do not take this into account dur-
ing the planning phase. A more sophisticated planner 
would explicitly integrate probability into plan gener-
ation, maximizing expected utility rather than assum-
ing resource impacts are constant and correct. For ex-
ample, excavation tasks involve risk; task failure could 
result in significant energy loss or damage to the 
lander. Reasoning about exogenous events such as 
these would improve utility achievement by poten-
tially avoiding such risks, or even seeking them out 
later in the mission when failure is less impactful. 

In addition, considering depletable resource usage 
probabilistically would allow optimization of plans to 
avoid significant utility loss if that resource is de-
pleted. For Europa Lander, energy use is a significant 
constraint on all tasks. By reasoning about the proba-
bility of running out of energy, we can improve our 
plans and avoid these cases when possible. One simple 
approach would be to discount a task's utility accord-
ing to the energy remaining at the time it is scheduled. 
This is analogous to the intuitive approach of discount-
ing a task's utility according to its distance into the fu-
ture. Instead of tying utility discounts to time, 

however, we tie it to energy, because this is the most 
significant task constraint in the Europa Lander prob-
lem. 

A more sophisticated approach would examine plan 
prefixes and choose the one that best balances poten-
tial utility and risk. Here, we would generate a set of 
plan prefixes that plan until some fixed time or energy 
point is reached, e.g. the start of the next planning cy-
cle. Given this plan prefix, we would generate plan 
postfixes given various energy levels, drawn from a 
distribution representing the battery remaining. Using 
a sampling approach, we could arbitrarily refine our 
estimate of the plan prefix's quality given various en-
ergy levels. Then, we would pick the plan prefix that 
maximizes the overall expected utility of the entire 
plan. Adding probabilistic reasoning into our planning 
algorithm is likely to improve plan quality and thus 
improve the overall performance of our planning and 
execution framework. 
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