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ABSTRACT 

TRACE (Traceable Robotic Activity Composer and 
Executive) is a tool designed to address the modeling, 
verification, and execution of planned and contingent 
activities during robotic space missions. These activi-
ties can be modeled (i.e., planned) graphically in 
TRACE using the Business Process Model and Nota-
tion (BPMN) language. This standardized language is 
used to model a sequence of robotic activities tied to-
gether by logical constructs, events, and time. TRACE 
includes verification tools to ensure feasibility before 
mission models are executed by TRACE’s executive, 
which is integrated into the autonomy subsystem via a 
connector. In this paper, we describe TRACE in detail 
as it would apply to a conceptual Europa Lander sur-
face mission with planned excavation and sample col-
lection activities, as well as, contingency activities 
when execution is off-nominal—all highlighting our 
novel use of BPMN as a lingua franca for the pipeline 
from mission planning to autonomous execution. 

1 INTRODUCTION 

Often planning of robotic activities for space (includ-
ing planetary, small body, etc.) exploration focuses on 
generating activity timelines and relying on replanning 
to opportunistically target secondary mission objec-
tives or respond to non-critical events [1]. On-board 
activities are then executed according to the timeline. 
An alternative approach is to model and execute the 
mission as a sequence (or flow) of activities with de-
cisions to “replan” (i.e., flow to another activity) being 
driven by events. TRACE (Traceable Robotic Activity 
Composer and Executive) is a tool designed to holisti-
cally address the modeling, verification, and execution 
of planned, opportunistic, and contingency activities 
during robotic missions from an event-driven execu-
tion perspective. 

The Business Process Modeling and Notation 
(BPMN) language is a standard maintained by the Ob-
ject Management Group that graphically models busi-
ness processes [2]. Elements within BPMN include 
events based on state or data, tasks for humans or au-
tomation, logical gateways for process flows, and 
pools and lanes for organizing resources (see reference 
guide for more details [3]). TRACE (formerly 

M2PEM [4]) tailors BPMN to the robotics domain. 
Automated tasks, like service tasks, correspond to ro-
botic activities, like navigation or grasping an instru-
ment with a robotic arm. Data-driven elements, like 
conditional events or exclusive gateways, use system 
data to allow the executive to make decisions on how 
to flow through the mission. TRACE follows the 
BPMN rule set and integrates these elements with the 
robotic system. Consequently, this standardized lan-
guage can be used to model a sequence of robotic ac-
tivities tied together by logical constructs, events, and 
time. A BPMN mission model encodes the sequence 
of activities for the mission. The BPMN event con-
structs provide a way to encode responses to opportu-
nities (e.g., detection of a new, interesting science tar-
get) or non-deterministic events (e.g., a subsystem 
fault) and diverge the process flow to a secondary pro-
cess that contains a sequence of alternate activities. 
These contingent (or opportunistic) activities can be 
modeled to execute in parallel to planned activities 
(e.g., start up an instrument) or to interrupt and then 
resume planned activities once completed. Since 
TRACE’s modeling tool (composer) allows a large de-
gree of flexibility in designing the mission, TRACE 
provides verification tools to ensure feasibility. Spe-
cifically, the BPMN mission models can be translated 
into the Process Meta Language (PROMELA) and in-
put into the Spin Model Checker with a set of mission 
requirements expressed in Linear Temporal Logic 
(LTL). Consequently, TRACE is able to verify if the 
mission completes (e.g., no dead locks, no starvation) 
and if it satisfies the mission requirements (e.g., per-
form science measurements at least k times) [4]. 
Lastly, verified mission models are then executed by 
TRACE’s executive, which integrates into the auton-
omy subsystem via a connector. The executive ac-
cesses data (e.g., sensors, system health) and invokes 
subroutines (e.g., navigate to coordinate) according to 
the mission model by interpreting it at runtime. 

Consequently, TRACE is a potential end-to-end solu-
tion for flight missions by providing integrated tools 
for modeling, verification, and execution of planned, 
opportunistic, and contingency robotic activities. In 
this paper, we describe TRACE in detail as it would 
apply to a conceptual Europa Lander surface mission, 
with planned excavation and science activities, as well 
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as, contingency activities in response to subsystem 
faults--all highlighting our novel use of BPMN as a 
lingua franca for the pipeline from mission planning to 
autonomous execution. 

TRACE has previously been demonstrated in missions 
with multiple UxV (uncrewed vehicles) for the Office 
of Naval Research [4], but this paper details an effort 
to improve this tool for Jet Propulsion Laboratory 
(JPL) and NASA use in planetary robotic missions. It 
could allow NASA/JPL to include opportunistic, nor-
mally unplanned, activities with the ability to explic-
itly model what will happen in response to an un-
planned event and to verify, prior to execution, that 
such a response does not compromise the overall mis-
sion. Specifically, this paper describes our first efforts 
to adapt TRACE to the current Europa Lander Auton-
omy Prototype (ELAP). We will focus our discussion 
on the integration of TRACE with this prototype to di-
rectly command a notional Europa Lander in simula-
tion by creating a plugin into our existing mission ex-
ecutive. A plug-in (or “connector”) is the primary 
method for integrating TRACE with another auton-
omy subsystem. While the executive is responsible for 
executing the logic of the BPMN mission model, a 
connector is responsible for accepting a parameterized 
task and invoking and monitoring the appropriate sys-
tem calls. For example, if the mission model contains 
a task Preheat Arm with a target temperature in Cel-
sius, then once the mission reaches this task, the exec-
utive will invoke the connector to set the heaters to 
provided target temperature. Effectively, the con-
nector code commands the heater controllers with set 
temperature and monitors controller outputs to deter-
mine if the activity is complete. Once the system has 
completed its activity (e.g., heaters have reached the 
target temperature), the connector informs the execu-
tive that this task is complete. Upon completion (or 
failure) of a task, the mission continues as it is mod-
eled. In this paper, a task in the mission model corre-
sponds to an activity request that is passed to ELAP 
for execution. ELAP will reply with either success or 
failure of this sequence to the executive via the con-
nector. In addition to system calls for activities, the 
connector also provides access to system data that may 
be fetched into mission model during runtime. Typi-
cally, this functionality is used to set up events or con-
ditions on system data, or to push data from the mis-
sion model to the system (such as a notification). Re-
ferring back to the earlier example, an alternative way 
to model heaters reaching a target temperature would 
be to create two activities, Turn On Heaters and Turn 

Off Heaters, and a condition event on the heater tem-
perature. First, Turn On Heaters is invoked. Upon suc-
cess, the mission executive monitors the condition 
event, which is triggered when the heaters reach the 
specified target temperature. This condition event is 
followed by Turn Off Heaters. TRACE through its use 
of BPMN can model and execute either of these sce-
narios easily. 

2 BENEFITS 

Based on our experiences of using TRACE (and 
thusly, BPMN) for multi-UxV (unmanned vehicles), 
this mission modeling, verification, and execution tool 
has a number of cross-cutting benefits that would ap-
ply equally to space missions. 

1. Event-driven: Compared to timeline sequenc-
ing, mission models can include fully mod-
eled responses to opportunistic events or con-
tingencies to faults that are handled by the ex-
ecutive directly at the time of the event. 

2. Flexibility: Reusable atomic tasks and hierar-
chical task organization reduces the modeling 
(or remodeling) effort when mission objec-
tives are altered. 

3. User Friendly: BPMN is a visual, symbolic 
language with well-known logical constructs 
and easy-to-follow rules. 

4. Verifiability: BPMN is encoded as XML and 
follows a rule set that can be translated to 
PROMELA for use with the Spin model 
checking tools. 

5. Standardization: TRACE supports the 
BPMN 2.0 standard over relying on a custom 
language. 

To demonstrates TRACE in its new domain, we inves-
tigated its application to the Europa Lander mission 
concept, but first we describe some new TRACE func-
tionality that allows us to integrate it with other auton-
omy subsystems, as well as, provide visualization of 
the execution timeline.  

3 FRAMEWORK 

The internal mechanisms by which TRACE ingests 
BPMN mission models and executes mobility and 
payload behaviors have been described in detail previ-
ously [4]. At a high level, BPMN mission models are 
encoded in XML and passed to the executive. This ex-
ecutive starts with the primary process and spawns to-
kens for all start events. Tokens flow along
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 sequence flows and take an action at each BPMN el-
ement. For example, at parallel gateways new tokens 
are spawned for each outgoing sequence flow or at in-
termediate throw events an event of a specified type 
(e.g., signal or message) is emitted. At service tasks (a 
special type of BPMN activity), a call to the system 
(e.g., a robotics middleware like the Robotics Operat-
ing System (ROS) [5]) is made via a connector. 

3.1 Connectors 

A connector is a new feature of TRACE. Whereas the 
TRACE executive (formerly M2PEM [4]) used to be 
tightly integrated with ROS, a plug-in architecture al-
lows TRACE to be used with more than one system. 
Integration with a new robotics middleware, for exam-
ple, only requires the development of a new connector. 
Figure 1 illustrates this new architecture. 

Consequently, the executive is primarily responsible 
for executing the BPMN mission model according to 
the BPMN rules, while any system-related operations 
are facilitated by the connector. The requirements on 
the connector is to provide a service-like API to activ-
ities. The executive will ask the connector to execute 
a task with properties (i.e., inputs) from the mission 
model and requires that the connector inform the ex-
ecutive if the task is either done or has encountered an 
error (or exception). The executive must also have the 
ability to abort the task, for example, when a boundary 
event requires that a service task is interrupted and ter-
minated. The connector may also provide other sys-
tem-level functionality, such as logging, an alternate 
clock, or message passing. A convenient side-effect of 

this connector-based architecture is that the executive 
can load multiple connectors and thus execute tasks on 
multiple different middlewares at once. 

3.2 Europa Lander Autonomy Prototype 

The Europa Lander Autonomy Prototype (ELAP) is a 
software testbed to explore what capabilities could be 
required for a potential autonomous surface mission 
on Europa (and other planetary surfaces). It provides a 
simulated platform with a world model database and 
controllable components typical of current robotic 
platforms for planetary surface missions, such as a ro-
botic arm, instruments, batteries, and heaters. Integra-
tion of ELAP with TRACE follows the new connector 
paradigm.  

The current iteration of the prototype uses the Robotic 
Operating System (ROS) to provide a service-like API 
through actionlib [6]. The actionlib library allows a 
ROS developer to provide interaction with a software 
component in terms of a topic name, as well as, an Ac-
tion message, which defines the goal, feedback, and 
result. Each executable activity within the prototype 
has a corresponding Action message defined in the 
message library. Consequently, we have implemented 
an autocoder to automatically parse the message li-
brary for Actions and create an Action client that is 
used inside the connector to (a) populate goals from 
inputs in the service tasks defined in the mission 
model, (b) send (and abort) goals, and (c) capture re-
sults as the output of the corresponding service task. 
An XML configuration file defines the set of available 
activities in the prototype and then is used to 

Figure 1: Improved functional architecture that uses a connector (plugin) to interface with the robotics middleware and other ex-
ternal components. 
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instantiate the Action clients when the mission model 
is loaded. As a pre-processing step, the executive will 
iterate over the mission model and confirm with the 
connector if a particular activity is available for exe-
cution. If not, then the mission fails to load. This con-
figuration file also contains a mapping of resource 
names to Action topics and types, such that, for exam-
ple, a service task with resource_name set to func-
tional.excavate_site will map to the ROS Action Ex-
cavateSite on the topic functional.excavate_site in the 
prototype. Lastly, each input in the service task must 
match up with a field in the Action request message. 
For example, if the ExcavateSite message has a field 
called selected_site of type ExcavationSite with a field 
called site_id of type int, then the input in the service 
must be defined as selected_site.site_id. Any error in 
the input, such as a bad field name or invalid type con-
version, will be caught in the connector and reported 
back as an error to execute the service task. 

3.3 Timeline Visualization 

Another improvement to TRACE is the integration of 
the Canvas Timeline Viewer, which is used with other 
planners and schedulers at the Jet Propulsion Labora-
tory (JPL), such as [7]. During runtime, the executive 
can record the execution of the mission in terms of the 
activities called through the connector, as well as, the 
state of data used to make decisions within the mission 
model by recording these to a JSON formatted file. 
Consequently, we are able to visualize the runtime ex-
ecution in the easily digested timeline format. 

3.4 Resuming Missions on Restart 

Lastly, a third improvement to TRACE is that mission 
execution state is saved to disk at runtime, such that if 
it is rebooted (e.g., due to a system reset), we are able 
to resume the mission in its last execution state. Any 
previously executing activity is commanded again. 

The following section focuses more specifically on 
various mission models developed for testing on the 
prototype: (1) the excavation of a candidate site and 
handling faults, and (2) responding to events based on 
time and energy system states. The objective is to 
demonstrate that the event-driven, activity-based mod-
eling and execution of TRACE is a promising alterna-
tive to existing timeline-based planning and execution 
tools. It also shows the standardized, user-friendly, 
and flexible representation of robotic missions using 
TRACE's application of BPMN. 

4 EUROPA LANDER SURFACE MISSION 

NASA's Europa Lander is a mission concept focused 
on landing a robotic spacecraft on the surface Jupiter's 

moon Europa [8]. The lander is carrying a variety of 
science instruments to search for evidence of biosig-
natures on Europa, assess the habitability of Europa, 
and characterize the surface and subsurface of Europa. 
Due to Jupiter's constant and intense radiation, the 
lander has a robotic arm to excavate approximately 
10cm below the surface to collect sample material pro-
tected from the radiation [9]. It must also achieve this 
task mostly autonomous, since two-way communica-
tion between Earth and Europa are very lengthy and 
the lander may have a relatively short operational life 
due to radiation, cold, and limited battery life. For a 
simplified perspective, we can summarize the Europa 
Lander surface operations as: 

1. Upon landing, use the cameras to capture a 
panoramic image. 

2. Determine a set of potential excavation sites 
around the lander from the image. 

3. While enough energy is available and we 
have not collected and analyzed (5) samples: 

a. Select the next best excavation site 
based on images, input from ground, 
or result of any previous analysis. 

b. Prepare the arm and excavate the 
site to the necessary depth. 

c. Use the camera to examine the ex-
cavation site for collection targets. 

d. For each collection target: collect, 
transfer, process, and analyze the 
sample. Then, communicate the 
analysis if the communication win-
dow is open. 

4. If energy is still available, continue to collect 
images, as well as, seismic/geological data. 

5. Before energy expires and communication 
window closes, communicate any available 
data. 

This description of the operations for the Europa 
Lander basic surface mission features a number of 
concepts: sequential operations, decisions by a ground 
operator, repeated operations, as well as, a contin-
gency for a fault. Figure 1 in the appendix is a BPMN 
mission model that captures the Europa Lander basic 
surface mission with respect to the provided high-level 
description in its current prototyped state. Actual flight 
mission models may be more complex, for example, 
to capture more contingencies, like issues with un-
stowing the robotic arm or overriding excavation site 
preferences by the ground system. Subprocesses with 
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a single service task are placeholders until the actual 
functionality is implemented in the prototype. 

In this model, the robotic activities are semantically 
represented by service tasks, while decisions by a 
ground operator would be represented by user tasks. 
Depending on their specification, these tasks may have 
a physical effect, such as moving the robotic arm, or a 
data effect, such as writing information into the system 
to use for the next activity. Upon execution, the service 
tasks would command the flight software (ELAP in 
our test case), while the user tasks would interface with 
ground operations. Since some of the activities are re-
peated for each excavation site or collection target, 
they are grouped in a sub-process for reuse. Within 
that sub-process, a boundary event on the Excavate 
call activity captures any fault generated and escalated 
by the excavation subprocess. As a consequence of the 
escalation, another site is selected by calling Select 
Next Valid Excavation Option to abandon excavation 
of the current site and find another option. 

4.1 Fault Handling during Excavation 

The nominal operation of the Excavate subprocess is 
that the robotic arm is prepared (i.e., heated to operat-
ing temperature), and then the surface is prepared for 
material removal. Material removal should remove 
enough of the surface material to reach a desired depth 
and then the robotic arm is stowed again. However, we 
could encounter a number of issues during excavation. 
For example, the tool used for excavation attached to 
the robotic arm could get stuck, the excavation may 
not achieve the desired depth, or the material could 
slump after excavation is completed. Of course, we 
want to be able to respond to these faults at runtime 

without necessarily putting the spacecraft into safe 
mode and awaiting ground to help rectify the issue a 
long while later. Consequently, the BPMN subprocess 
for Excavate illustrated in Figure 3 has additional 
pathways to handle the different faults identified. An 
error boundary event captures any faults that happen 
within Remove Material and leads to a decision gate-
way. If the tool is stuck, then execute Unstick Tool and 
try Remove Material again. If the excavation failed to 
reach the desired depth, then simply retry Remove Ma-
terial. Otherwise, the issue is escalated to the parent 
process and this instance of Excavate is over. Material 
slumping, on the other hand, is handled after Remove 
Material completes successfully. Assess Final Exca-
vation Success is another activity that uses the camera 
to investigate if the material has slumped after the ro-
botic arm has finished excavating. If so, then we retry 
Remove Material. The set of responses to the fault are 
simple in this case, but illustrated that one can explic-
itly specify how the mission should flow when such a 
fault is encountered. An advantage to implementing 
these contingencies in the mission model is that it is 
simple to change the process flow later without having 
to reimplement the prototype itself. 

4.2 Responding to Time and Energy States 

Figure 4 illustrates the parent process in which Exca-
vate is called. In this particular mission model, there is 
a cycle after Select Initial Excavation Locations that 
nominally selects the next best excavation site, exca-
vates it, and then calls a Collect All Samples from Ex-
cavation Site subprocess to collect, transfer, process, 
analyze, and then communicate for each collection tar-
get within the excavation site. The executive keeps 

Figure 3: The Excavate subprocess in the BPMN mission model illustrating contingencies when Remove Material fails or the 
material slumps afterward Remove Material. 
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track of the current excavation site via site_id, which 
is an output of Select Next Valid Excavation Option 
and used as input to Excavate and Find Collection Tar-
gets. As previously described, if Excavate is unsuc-
cessful, then Select Next Valid Excavation Option is 
called. The cycle continues until no more excavation 
sites are available. However, the cycle can also be 
aborted early due to two conditions: 

1. Time: The Excavate and Collect Samples 
subprocess has a timer boundary event at-
tached, which can be set to either trigger at a 
specific absolute mission time, or after some 
specified duration. Both time and duration 
are encoded in the ISO 8601 format. In this 
case, there is a deadline before the final com-
munication window closes. 

2. Energy: The Battery Monitor subprocess 
checks the battery state in parallel with the 
Excavate and Collect Samples subprocess. If 
the battery level drops below a specific 
threshold (e.g., 30% remaining), then a signal 
is sent to abort excavating and collecting 

samples. Alternatively, a conditional bound-
ary event could be used to implement this 
constraint. 

In both cases, the mission moves onto a final activity 
to Communicate Until Death and then the mission 
ends. Other use cases for time- and energy-based re-
sponses are, for example, responding to activities tak-
ing longer or more energy than expected or skipping 
activities until the communication window reopens. 
Additionally, thermals are another state that we are 
handling in an upcoming iteration of the prototype. 

In addition to the general benefits of using BPMN for 
robotic mission modelling described in Section 2. This 
mission model highlights a number of other ad-
vantages: 

1. Reusability: Sub-processes allow grouping of 
activities that can be invoked repeatedly like 
a macro. Call activities are implemented like 
symbolic links to some other BPMN element 
or process that is then invoked. 

Figure 4: The Basic Surface Mission 1 (BSM-1) main process illustrating conditions when the subprocess to Excavate and Col-
lect Samples is aborted early. 
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2. Contingency Modeling: System faults, like a 
collision, can be explicitly modeled and han-
dled in any way as prescribed in the mission 
model. Since safe modes are integrated into 
the mission plan, they can return to nominal 
mission `flow` upon resolution or be esca-
lated. 

3. Data-driven Execution Decisions: Decisions 
can be made based on data in the system: Are 
there more sample targets? If so, then re-
peated sample collection with the next target. 

One last note: this mission model is one way of mod-
eling these notional Europa Lander surface operations; 
it is not unusual for another modeler to organize the 
model differently, while achieving the same mission 
objective. 

5 CONCLUSIONS AND FUTURE WORK 

TRACE is a new tool to model and execute event-
driven, activity-based missions with one or more 
spacecraft (e.g., rover, lander, helicopter). TRACE has 
been previously demonstrated as an effective mission 
modeling and execution tool in the field. Building on 
this success, we have shown in this paper how TRACE 
and its connector (plug-in) API can be adapted to the 
execution of space missions involving a spacecraft and 
ground operations. The connector architecture was 
created to allow us to leverage the benefits and ad-
vantages of TRACE as an alternative (or complement) 
to the timeline-based mission planning and execution 
tools for existing autonomy subsystems. We created 
mission models for a representative set of robotic arm 
and science activities that would be executed by the 
Europa Lander during an autonomous surface mission. 
These examples were chosen deliberately to show the 
standardized, user-friendly, and flexible nature of the 
TRACE's BPMN-based mission modeling, as well as 
the practical aspects of using BPMN models for space-
craft missions. For example, how spacecraft missions 
could be modeled, how ground ops should be modeled 
within BPMN, how contingencies to faults are inte-
grated into the mission model, and how data-driven 
execution decisions are leveraged. Future work focus 
on full-pipeline execution of these models simulated 
within ELAP, along with improvements to the verifi-
cation tools, such that LTL expressions can be used to 
enforce resource and mission requirements prior to ex-
ecution. 
 
Appendix 

Appendix includes the full BPMN mission model 
demonstrated with the Europa Lander autonomy pro-
totype in June 2020 and referenced throughout this pa-
per. 

Acknowledgement 

This work was carried out at the Jet Propulsion La-
boratory, California Institute of Technology, under a 
contract with the National Aeronautics and Space 
Administration. © 2020 California Institute of Tech-
nology. All rights reserved. 
 
References 
 
[1]  V. Verma, D. Gaines, G. Rabideau, S. Schaffer 

and R. Joshi, "utonomous science restart for the 
planned Europa mission with lightweight 
planning and execution," Jet Propulsion 
Laboratory, California Institute of Technology, 
2017. 

[2]  H. Völzer, "An Overview of BPMN 2.0 and Its 
Potential Use," in BPMN 2010: Business Process 
Modeling Notation, Springer, 2010, pp. 14-15. 

[3]  Camunda, "BPMN Modeling Reference," 
[Online]. Available: 
https://camunda.com/bpmn/reference/. [Accessed 
2020]. 

[4]  J.-P. de la Croix, G. Lim, J. Vander Hook, A. 
Rahmani, G. Droge, A. Xydes and C. Scrapper, 
"Mission modeling, planning, and execution 
module for teams of unmanned vehicles," in 
Unmanned Systems Technology XIX, 2017.  

[5]  M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. 
Foote, J. Leibs, R. Wheeler and A. Y. Ng, "ROS: 
an open-source Robot Operating System," in 
ICRA Workshop on Open Source Software, 2009.  

[6]  Robotics Operating System, "actionlib," [Online]. 
Available: http://wiki.ros.org/actionlib. [Accessed 
2020]. 

[7]  D. Gaines and S. Chien, "M2020," [Online]. 
Available: https://www-
aig.jpl.nasa.gov/public/projects/m2020-
scheduler/. [Accessed 2020]. 

[8]  Jet Propulsion Laboratory, California Institute of 
Technology, "Mission to Europa: Europa Lander," 
[Online]. Available: 
https://www.jpl.nasa.gov/missions/europa-lander/. 
[Accessed 2020]. 

[9]  Jet Propulsion Laboratory, California Institute of 
Technology, "Europa/Ocean Worlds Lander 
Mission Concept," 2020. [Online]. Available: 
https://www.jpl.nasa.gov/missions/web/absscicon/
2020_ELOW_Final_20200514_Post_v2.pdf. 
[Accessed 2020]. 

 
 
  

5045.pdfi-SAIRAS2020-Papers (2020)



 

Figure 1: The notional Basic Surface Mission for the Europa Lander concept implemented in BPMN. 

5045.pdfi-SAIRAS2020-Papers (2020)


