
Event-Driven Modeling and Execution of Robotic Activities and Contingencies
in the Europa Lander Mission Concept Using BPMN

Jean-Pierre de la Croix1, Grace Lim1
1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA,

Jean-Pierre.de.la.Croix@jpl.nasa.gov, Grace.Lim@jpl.nasa.gov

ABSTRACT

TRACE (Traceable Robotic Activity Composer and
Executive) is a tool designed to address the modeling,
verification, and execution of planned and contingent
activities during robotic space missions. These activi-
ties can be modeled (i.e., planned) graphically in
TRACE using the Business Process Model and Nota-
tion (BPMN) language. This standardized language is
used to model a sequence of robotic activities tied to-
gether by logical constructs, events, and time. TRACE
includes verification tools to ensure feasibility before
mission models are executed by TRACE’s executive,
which is integrated into the autonomy subsystem via a
connector. In this paper, we describe TRACE in detail
as it would apply to a conceptual Europa Lander sur-
face mission with planned excavation and sample col-
lection activities, as well as, contingency activities
when execution is off-nominal—all highlighting our
novel use of BPMN as a lingua franca for the pipeline
from mission planning to autonomous execution.

1 INTRODUCTION

Often planning of robotic activities for space (includ-
ing planetary, small body, etc.) exploration focuses on
generating activity timelines and relying on replanning
to opportunistically target secondary mission objec-
tives or respond to non-critical events [1]. On-board
activities are then executed according to the timeline.
An alternative approach is to model and execute the
mission as a sequence (or flow) of activities with de-
cisions to “replan” (i.e., flow to another activity) being
driven by events. TRACE (Traceable Robotic Activity
Composer and Executive) is a tool designed to holisti-
cally address the modeling, verification, and execution
of planned, opportunistic, and contingency activities
during robotic missions from an event-driven execu-
tion perspective.

The Business Process Modeling and Notation
(BPMN) language is a standard maintained by the Ob-
ject Management Group that graphically models busi-
ness processes [2]. Elements within BPMN include
events based on state or data, tasks for humans or au-
tomation, logical gateways for process flows, and
pools and lanes for organizing resources (see reference
guide for more details [3]). TRACE (formerly

M2PEM [4]) tailors BPMN to the robotics domain.
Automated tasks, like service tasks, correspond to ro-
botic activities, like navigation or grasping an instru-
ment with a robotic arm. Data-driven elements, like
conditional events or exclusive gateways, use system
data to allow the executive to make decisions on how
to flow through the mission. TRACE follows the
BPMN rule set and integrates these elements with the
robotic system. Consequently, this standardized lan-
guage can be used to model a sequence of robotic ac-
tivities tied together by logical constructs, events, and
time. A BPMN mission model encodes the sequence
of activities for the mission. The BPMN event con-
structs provide a way to encode responses to opportu-
nities (e.g., detection of a new, interesting science tar-
get) or non-deterministic events (e.g., a subsystem
fault) and diverge the process flow to a secondary pro-
cess that contains a sequence of alternate activities.
These contingent (or opportunistic) activities can be
modeled to execute in parallel to planned activities
(e.g., start up an instrument) or to interrupt and then
resume planned activities once completed. Since
TRACE’s modeling tool (composer) allows a large de-
gree of flexibility in designing the mission, TRACE
provides verification tools to ensure feasibility. Spe-
cifically, the BPMN mission models can be translated
into the Process Meta Language (PROMELA) and in-
put into the Spin Model Checker with a set of mission
requirements expressed in Linear Temporal Logic
(LTL). Consequently, TRACE is able to verify if the
mission completes (e.g., no dead locks, no starvation)
and if it satisfies the mission requirements (e.g., per-
form science measurements at least k times) [4].
Lastly, verified mission models are then executed by
TRACE’s executive, which integrates into the auton-
omy subsystem via a connector. The executive ac-
cesses data (e.g., sensors, system health) and invokes
subroutines (e.g., navigate to coordinate) according to
the mission model by interpreting it at runtime.

Consequently, TRACE is a potential end-to-end solu-
tion for flight missions by providing integrated tools
for modeling, verification, and execution of planned,
opportunistic, and contingency robotic activities. In
this paper, we describe TRACE in detail as it would
apply to a conceptual Europa Lander surface mission,
with planned excavation and science activities, as well

5045.pdfi-SAIRAS2020-Papers (2020)

as, contingency activities in response to subsystem
faults--all highlighting our novel use of BPMN as a
lingua franca for the pipeline from mission planning to
autonomous execution.

TRACE has previously been demonstrated in missions
with multiple UxV (uncrewed vehicles) for the Office
of Naval Research [4], but this paper details an effort
to improve this tool for Jet Propulsion Laboratory
(JPL) and NASA use in planetary robotic missions. It
could allow NASA/JPL to include opportunistic, nor-
mally unplanned, activities with the ability to explic-
itly model what will happen in response to an un-
planned event and to verify, prior to execution, that
such a response does not compromise the overall mis-
sion. Specifically, this paper describes our first efforts
to adapt TRACE to the current Europa Lander Auton-
omy Prototype (ELAP). We will focus our discussion
on the integration of TRACE with this prototype to di-
rectly command a notional Europa Lander in simula-
tion by creating a plugin into our existing mission ex-
ecutive. A plug-in (or “connector”) is the primary
method for integrating TRACE with another auton-
omy subsystem. While the executive is responsible for
executing the logic of the BPMN mission model, a
connector is responsible for accepting a parameterized
task and invoking and monitoring the appropriate sys-
tem calls. For example, if the mission model contains
a task Preheat Arm with a target temperature in Cel-
sius, then once the mission reaches this task, the exec-
utive will invoke the connector to set the heaters to
provided target temperature. Effectively, the con-
nector code commands the heater controllers with set
temperature and monitors controller outputs to deter-
mine if the activity is complete. Once the system has
completed its activity (e.g., heaters have reached the
target temperature), the connector informs the execu-
tive that this task is complete. Upon completion (or
failure) of a task, the mission continues as it is mod-
eled. In this paper, a task in the mission model corre-
sponds to an activity request that is passed to ELAP
for execution. ELAP will reply with either success or
failure of this sequence to the executive via the con-
nector. In addition to system calls for activities, the
connector also provides access to system data that may
be fetched into mission model during runtime. Typi-
cally, this functionality is used to set up events or con-
ditions on system data, or to push data from the mis-
sion model to the system (such as a notification). Re-
ferring back to the earlier example, an alternative way
to model heaters reaching a target temperature would
be to create two activities, Turn On Heaters and Turn

Off Heaters, and a condition event on the heater tem-
perature. First, Turn On Heaters is invoked. Upon suc-
cess, the mission executive monitors the condition
event, which is triggered when the heaters reach the
specified target temperature. This condition event is
followed by Turn Off Heaters. TRACE through its use
of BPMN can model and execute either of these sce-
narios easily.

2 BENEFITS

Based on our experiences of using TRACE (and
thusly, BPMN) for multi-UxV (unmanned vehicles),
this mission modeling, verification, and execution tool
has a number of cross-cutting benefits that would ap-
ply equally to space missions.

1. Event-driven: Compared to timeline sequenc-
ing, mission models can include fully mod-
eled responses to opportunistic events or con-
tingencies to faults that are handled by the ex-
ecutive directly at the time of the event.

2. Flexibility: Reusable atomic tasks and hierar-
chical task organization reduces the modeling
(or remodeling) effort when mission objec-
tives are altered.

3. User Friendly: BPMN is a visual, symbolic
language with well-known logical constructs
and easy-to-follow rules.

4. Verifiability: BPMN is encoded as XML and
follows a rule set that can be translated to
PROMELA for use with the Spin model
checking tools.

5. Standardization: TRACE supports the
BPMN 2.0 standard over relying on a custom
language.

To demonstrates TRACE in its new domain, we inves-
tigated its application to the Europa Lander mission
concept, but first we describe some new TRACE func-
tionality that allows us to integrate it with other auton-
omy subsystems, as well as, provide visualization of
the execution timeline.

3 FRAMEWORK

The internal mechanisms by which TRACE ingests
BPMN mission models and executes mobility and
payload behaviors have been described in detail previ-
ously [4]. At a high level, BPMN mission models are
encoded in XML and passed to the executive. This ex-
ecutive starts with the primary process and spawns to-
kens for all start events. Tokens flow along

5045.pdfi-SAIRAS2020-Papers (2020)

 sequence flows and take an action at each BPMN el-
ement. For example, at parallel gateways new tokens
are spawned for each outgoing sequence flow or at in-
termediate throw events an event of a specified type
(e.g., signal or message) is emitted. At service tasks (a
special type of BPMN activity), a call to the system
(e.g., a robotics middleware like the Robotics Operat-
ing System (ROS) [5]) is made via a connector.

3.1 Connectors

A connector is a new feature of TRACE. Whereas the
TRACE executive (formerly M2PEM [4]) used to be
tightly integrated with ROS, a plug-in architecture al-
lows TRACE to be used with more than one system.
Integration with a new robotics middleware, for exam-
ple, only requires the development of a new connector.
Figure 1 illustrates this new architecture.

Consequently, the executive is primarily responsible
for executing the BPMN mission model according to
the BPMN rules, while any system-related operations
are facilitated by the connector. The requirements on
the connector is to provide a service-like API to activ-
ities. The executive will ask the connector to execute
a task with properties (i.e., inputs) from the mission
model and requires that the connector inform the ex-
ecutive if the task is either done or has encountered an
error (or exception). The executive must also have the
ability to abort the task, for example, when a boundary
event requires that a service task is interrupted and ter-
minated. The connector may also provide other sys-
tem-level functionality, such as logging, an alternate
clock, or message passing. A convenient side-effect of

this connector-based architecture is that the executive
can load multiple connectors and thus execute tasks on
multiple different middlewares at once.

3.2 Europa Lander Autonomy Prototype

The Europa Lander Autonomy Prototype (ELAP) is a
software testbed to explore what capabilities could be
required for a potential autonomous surface mission
on Europa (and other planetary surfaces). It provides a
simulated platform with a world model database and
controllable components typical of current robotic
platforms for planetary surface missions, such as a ro-
botic arm, instruments, batteries, and heaters. Integra-
tion of ELAP with TRACE follows the new connector
paradigm.

The current iteration of the prototype uses the Robotic
Operating System (ROS) to provide a service-like API
through actionlib [6]. The actionlib library allows a
ROS developer to provide interaction with a software
component in terms of a topic name, as well as, an Ac-
tion message, which defines the goal, feedback, and
result. Each executable activity within the prototype
has a corresponding Action message defined in the
message library. Consequently, we have implemented
an autocoder to automatically parse the message li-
brary for Actions and create an Action client that is
used inside the connector to (a) populate goals from
inputs in the service tasks defined in the mission
model, (b) send (and abort) goals, and (c) capture re-
sults as the output of the corresponding service task.
An XML configuration file defines the set of available
activities in the prototype and then is used to

Figure 1: Improved functional architecture that uses a connector (plugin) to interface with the robotics middleware and other ex-
ternal components.

5045.pdfi-SAIRAS2020-Papers (2020)

instantiate the Action clients when the mission model
is loaded. As a pre-processing step, the executive will
iterate over the mission model and confirm with the
connector if a particular activity is available for exe-
cution. If not, then the mission fails to load. This con-
figuration file also contains a mapping of resource
names to Action topics and types, such that, for exam-
ple, a service task with resource_name set to func-
tional.excavate_site will map to the ROS Action Ex-
cavateSite on the topic functional.excavate_site in the
prototype. Lastly, each input in the service task must
match up with a field in the Action request message.
For example, if the ExcavateSite message has a field
called selected_site of type ExcavationSite with a field
called site_id of type int, then the input in the service
must be defined as selected_site.site_id. Any error in
the input, such as a bad field name or invalid type con-
version, will be caught in the connector and reported
back as an error to execute the service task.

3.3 Timeline Visualization

Another improvement to TRACE is the integration of
the Canvas Timeline Viewer, which is used with other
planners and schedulers at the Jet Propulsion Labora-
tory (JPL), such as [7]. During runtime, the executive
can record the execution of the mission in terms of the
activities called through the connector, as well as, the
state of data used to make decisions within the mission
model by recording these to a JSON formatted file.
Consequently, we are able to visualize the runtime ex-
ecution in the easily digested timeline format.

3.4 Resuming Missions on Restart

Lastly, a third improvement to TRACE is that mission
execution state is saved to disk at runtime, such that if
it is rebooted (e.g., due to a system reset), we are able
to resume the mission in its last execution state. Any
previously executing activity is commanded again.

The following section focuses more specifically on
various mission models developed for testing on the
prototype: (1) the excavation of a candidate site and
handling faults, and (2) responding to events based on
time and energy system states. The objective is to
demonstrate that the event-driven, activity-based mod-
eling and execution of TRACE is a promising alterna-
tive to existing timeline-based planning and execution
tools. It also shows the standardized, user-friendly,
and flexible representation of robotic missions using
TRACE's application of BPMN.

4 EUROPA LANDER SURFACE MISSION

NASA's Europa Lander is a mission concept focused
on landing a robotic spacecraft on the surface Jupiter's

moon Europa [8]. The lander is carrying a variety of
science instruments to search for evidence of biosig-
natures on Europa, assess the habitability of Europa,
and characterize the surface and subsurface of Europa.
Due to Jupiter's constant and intense radiation, the
lander has a robotic arm to excavate approximately
10cm below the surface to collect sample material pro-
tected from the radiation [9]. It must also achieve this
task mostly autonomous, since two-way communica-
tion between Earth and Europa are very lengthy and
the lander may have a relatively short operational life
due to radiation, cold, and limited battery life. For a
simplified perspective, we can summarize the Europa
Lander surface operations as:

1. Upon landing, use the cameras to capture a
panoramic image.

2. Determine a set of potential excavation sites
around the lander from the image.

3. While enough energy is available and we
have not collected and analyzed (5) samples:

a. Select the next best excavation site
based on images, input from ground,
or result of any previous analysis.

b. Prepare the arm and excavate the
site to the necessary depth.

c. Use the camera to examine the ex-
cavation site for collection targets.

d. For each collection target: collect,
transfer, process, and analyze the
sample. Then, communicate the
analysis if the communication win-
dow is open.

4. If energy is still available, continue to collect
images, as well as, seismic/geological data.

5. Before energy expires and communication
window closes, communicate any available
data.

This description of the operations for the Europa
Lander basic surface mission features a number of
concepts: sequential operations, decisions by a ground
operator, repeated operations, as well as, a contin-
gency for a fault. Figure 1 in the appendix is a BPMN
mission model that captures the Europa Lander basic
surface mission with respect to the provided high-level
description in its current prototyped state. Actual flight
mission models may be more complex, for example,
to capture more contingencies, like issues with un-
stowing the robotic arm or overriding excavation site
preferences by the ground system. Subprocesses with

5045.pdfi-SAIRAS2020-Papers (2020)

a single service task are placeholders until the actual
functionality is implemented in the prototype.

In this model, the robotic activities are semantically
represented by service tasks, while decisions by a
ground operator would be represented by user tasks.
Depending on their specification, these tasks may have
a physical effect, such as moving the robotic arm, or a
data effect, such as writing information into the system
to use for the next activity. Upon execution, the service
tasks would command the flight software (ELAP in
our test case), while the user tasks would interface with
ground operations. Since some of the activities are re-
peated for each excavation site or collection target,
they are grouped in a sub-process for reuse. Within
that sub-process, a boundary event on the Excavate
call activity captures any fault generated and escalated
by the excavation subprocess. As a consequence of the
escalation, another site is selected by calling Select
Next Valid Excavation Option to abandon excavation
of the current site and find another option.

4.1 Fault Handling during Excavation

The nominal operation of the Excavate subprocess is
that the robotic arm is prepared (i.e., heated to operat-
ing temperature), and then the surface is prepared for
material removal. Material removal should remove
enough of the surface material to reach a desired depth
and then the robotic arm is stowed again. However, we
could encounter a number of issues during excavation.
For example, the tool used for excavation attached to
the robotic arm could get stuck, the excavation may
not achieve the desired depth, or the material could
slump after excavation is completed. Of course, we
want to be able to respond to these faults at runtime

without necessarily putting the spacecraft into safe
mode and awaiting ground to help rectify the issue a
long while later. Consequently, the BPMN subprocess
for Excavate illustrated in Figure 3 has additional
pathways to handle the different faults identified. An
error boundary event captures any faults that happen
within Remove Material and leads to a decision gate-
way. If the tool is stuck, then execute Unstick Tool and
try Remove Material again. If the excavation failed to
reach the desired depth, then simply retry Remove Ma-
terial. Otherwise, the issue is escalated to the parent
process and this instance of Excavate is over. Material
slumping, on the other hand, is handled after Remove
Material completes successfully. Assess Final Exca-
vation Success is another activity that uses the camera
to investigate if the material has slumped after the ro-
botic arm has finished excavating. If so, then we retry
Remove Material. The set of responses to the fault are
simple in this case, but illustrated that one can explic-
itly specify how the mission should flow when such a
fault is encountered. An advantage to implementing
these contingencies in the mission model is that it is
simple to change the process flow later without having
to reimplement the prototype itself.

4.2 Responding to Time and Energy States

Figure 4 illustrates the parent process in which Exca-
vate is called. In this particular mission model, there is
a cycle after Select Initial Excavation Locations that
nominally selects the next best excavation site, exca-
vates it, and then calls a Collect All Samples from Ex-
cavation Site subprocess to collect, transfer, process,
analyze, and then communicate for each collection tar-
get within the excavation site. The executive keeps

Figure 3: The Excavate subprocess in the BPMN mission model illustrating contingencies when Remove Material fails or the
material slumps afterward Remove Material.

5045.pdfi-SAIRAS2020-Papers (2020)

track of the current excavation site via site_id, which
is an output of Select Next Valid Excavation Option
and used as input to Excavate and Find Collection Tar-
gets. As previously described, if Excavate is unsuc-
cessful, then Select Next Valid Excavation Option is
called. The cycle continues until no more excavation
sites are available. However, the cycle can also be
aborted early due to two conditions:

1. Time: The Excavate and Collect Samples
subprocess has a timer boundary event at-
tached, which can be set to either trigger at a
specific absolute mission time, or after some
specified duration. Both time and duration
are encoded in the ISO 8601 format. In this
case, there is a deadline before the final com-
munication window closes.

2. Energy: The Battery Monitor subprocess
checks the battery state in parallel with the
Excavate and Collect Samples subprocess. If
the battery level drops below a specific
threshold (e.g., 30% remaining), then a signal
is sent to abort excavating and collecting

samples. Alternatively, a conditional bound-
ary event could be used to implement this
constraint.

In both cases, the mission moves onto a final activity
to Communicate Until Death and then the mission
ends. Other use cases for time- and energy-based re-
sponses are, for example, responding to activities tak-
ing longer or more energy than expected or skipping
activities until the communication window reopens.
Additionally, thermals are another state that we are
handling in an upcoming iteration of the prototype.

In addition to the general benefits of using BPMN for
robotic mission modelling described in Section 2. This
mission model highlights a number of other ad-
vantages:

1. Reusability: Sub-processes allow grouping of
activities that can be invoked repeatedly like
a macro. Call activities are implemented like
symbolic links to some other BPMN element
or process that is then invoked.

Figure 4: The Basic Surface Mission 1 (BSM-1) main process illustrating conditions when the subprocess to Excavate and Col-
lect Samples is aborted early.

5045.pdfi-SAIRAS2020-Papers (2020)

2. Contingency Modeling: System faults, like a
collision, can be explicitly modeled and han-
dled in any way as prescribed in the mission
model. Since safe modes are integrated into
the mission plan, they can return to nominal
mission `flow` upon resolution or be esca-
lated.

3. Data-driven Execution Decisions: Decisions
can be made based on data in the system: Are
there more sample targets? If so, then re-
peated sample collection with the next target.

One last note: this mission model is one way of mod-
eling these notional Europa Lander surface operations;
it is not unusual for another modeler to organize the
model differently, while achieving the same mission
objective.

5 CONCLUSIONS AND FUTURE WORK

TRACE is a new tool to model and execute event-
driven, activity-based missions with one or more
spacecraft (e.g., rover, lander, helicopter). TRACE has
been previously demonstrated as an effective mission
modeling and execution tool in the field. Building on
this success, we have shown in this paper how TRACE
and its connector (plug-in) API can be adapted to the
execution of space missions involving a spacecraft and
ground operations. The connector architecture was
created to allow us to leverage the benefits and ad-
vantages of TRACE as an alternative (or complement)
to the timeline-based mission planning and execution
tools for existing autonomy subsystems. We created
mission models for a representative set of robotic arm
and science activities that would be executed by the
Europa Lander during an autonomous surface mission.
These examples were chosen deliberately to show the
standardized, user-friendly, and flexible nature of the
TRACE's BPMN-based mission modeling, as well as
the practical aspects of using BPMN models for space-
craft missions. For example, how spacecraft missions
could be modeled, how ground ops should be modeled
within BPMN, how contingencies to faults are inte-
grated into the mission model, and how data-driven
execution decisions are leveraged. Future work focus
on full-pipeline execution of these models simulated
within ELAP, along with improvements to the verifi-
cation tools, such that LTL expressions can be used to
enforce resource and mission requirements prior to ex-
ecution.

Appendix

Appendix includes the full BPMN mission model
demonstrated with the Europa Lander autonomy pro-
totype in June 2020 and referenced throughout this pa-
per.

Acknowledgement

This work was carried out at the Jet Propulsion La-
boratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration. © 2020 California Institute of Tech-
nology. All rights reserved.

References

[1] V. Verma, D. Gaines, G. Rabideau, S. Schaffer

and R. Joshi, "utonomous science restart for the
planned Europa mission with lightweight
planning and execution," Jet Propulsion
Laboratory, California Institute of Technology,
2017.

[2] H. Völzer, "An Overview of BPMN 2.0 and Its
Potential Use," in BPMN 2010: Business Process
Modeling Notation, Springer, 2010, pp. 14-15.

[3] Camunda, "BPMN Modeling Reference,"
[Online]. Available:
https://camunda.com/bpmn/reference/. [Accessed
2020].

[4] J.-P. de la Croix, G. Lim, J. Vander Hook, A.
Rahmani, G. Droge, A. Xydes and C. Scrapper,
"Mission modeling, planning, and execution
module for teams of unmanned vehicles," in
Unmanned Systems Technology XIX, 2017.

[5] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T.
Foote, J. Leibs, R. Wheeler and A. Y. Ng, "ROS:
an open-source Robot Operating System," in
ICRA Workshop on Open Source Software, 2009.

[6] Robotics Operating System, "actionlib," [Online].
Available: http://wiki.ros.org/actionlib. [Accessed
2020].

[7] D. Gaines and S. Chien, "M2020," [Online].
Available: https://www-
aig.jpl.nasa.gov/public/projects/m2020-
scheduler/. [Accessed 2020].

[8] Jet Propulsion Laboratory, California Institute of
Technology, "Mission to Europa: Europa Lander,"
[Online]. Available:
https://www.jpl.nasa.gov/missions/europa-lander/.
[Accessed 2020].

[9] Jet Propulsion Laboratory, California Institute of
Technology, "Europa/Ocean Worlds Lander
Mission Concept," 2020. [Online]. Available:
https://www.jpl.nasa.gov/missions/web/absscicon/
2020_ELOW_Final_20200514_Post_v2.pdf.
[Accessed 2020].

5045.pdfi-SAIRAS2020-Papers (2020)

Figure 1: The notional Basic Surface Mission for the Europa Lander concept implemented in BPMN.

5045.pdfi-SAIRAS2020-Papers (2020)

