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ABSTRACT 

In the domain of planetary science, novelty detection 

is quickly gaining attention because of the operational 

solutions it offers, including annotated data products 

and downlink prioritization. When detecting novelties 

in images, autoencoders have shown to have value, 

both in their predictive properties and their visualiza-

tions. In this study, a processing pipeline that supports 

rapid autoencoder prototyping for novelty detection is 

presented, along with two autoencoder variants. Mod-

els are trained on two planetary datasets: The Moon 

and Mars. Results show that these networks outper-

form state-of-the-art networks by over 6% when mon-

itoring the area under the receiver operating character-

istic curve. Operational viability of the proposed auto-

encoder networks is discussed. 

1 INTRODUCTION 

Recent missions to Mars and the Moon have paved the 

way for future scientific exploration missions to be 

conducted more autonomously, more precisely, and 

more robustly. One way this can be achieved is 

through onboard novelty detection. For example, a vi-

sion system capable of detecting planetary surface fea-

tures of interest, and from these ranking them accord-

ing to their scientific potential would relieve opera-

tional bottlenecks and save precious human time. Such 

a system could intelligently prioritize which content is 

downlinked, allowing mission operators to spend less 

time with manual selection. It could supplement the 

process of scientific analysis with automated predic-

tions, and perhaps most importantly, it could enable 

data collection to continue during communication 

dropouts. 

Previous work in the area of image-based novelty de-

tection has demonstrated that convolutional autoen-

coders (CAEs) can detect Martian surface features on 

par with other methods such as Reed-Xiaoli detectors 

and Generative Adversarial Networks (GANs) [1]. 

One benefit of autoencoders over these other methods 

is the interpretability of their results. Since the training 

objective of an autoencoder is to reproduce the input 

image from a lower dimensional (latent) representa-

tion, once an autoencoder has been trained, error maps 

can be created to visualize how the reconstructed out-

puts and the original inputs differ. As can be seen in 

Fig. 1, these error maps supply spatial and spectral in-

formation about the location and magnitude of novel 

features. 

 

Figure 1: Representative images of the input (left), recon-

struction (middle), and squared-difference error of the 

green channel (right) for (a) novel and (b) typical Lunar 

images, and (c) novel  and (d) typical Martian images. 

Our goal is to develop an end-to-end novelty detector 

that can be used operationally in planetary explora-

tion missions. As a first step toward this, we have de-

veloped a novelty detection processing and evalua-

tion pipeline for the purpose of algorithmic testing. In 

these preliminary stages, focus was placed on build-

ing a pipeline that supports rapid model prototyping, 

parameter optimization, and hypothesis validation. So 

far, the processing pipeline has been equipped with 

datasets from: The Moon and Mars.  
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In this paper, we introduce our processing pipeline, 

present structural improvements upon an existing 

baseline network and demonstrate its capabilities. We 

also implement a variational autoencoder (VAE) and 

gauge its performance against this baseline model. We 

explore the predictive capabilities of autoencoder-

based novelty detection algorithms, expanding the 

quantitative analysis to the viability of such networks 

in an operational setting. In many ways, this study rep-

resents the strides that have been made to date towards 

an end-to-end detector that can be integrated into fu-

ture rover missions on the systems level. 

2 RELATED WORK 

Novelty detection is part of a well-established set of 

techniques used to detect samples or features from 

within a set of data that are either unique or statistically 

uncommon. In nomenclature, anomaly detection is an 

umbrella term that covers both outlier detection and 

novelty detection. Although the definitions of these 

methods differ slightly, it is often appropriate to use 

them interchangeably [2]. 

Autoencoders have been applied to the problem of 

novelty detection since the early 2000s [3]. However, 

interest in the approach picked up in the mid 2010s 

when several teams released research demonstrating 

the applicability of autoencoders to image-based nov-

elty detection [4], [5]. Extensions to the standard fully 

convolutional autoencoder were proposed that use 

probabilistic encoders and decoders—that is, they out-

put parameters of the encoding distribution instead of 

the encoded pixel values themselves.  Two primary 

extensions have been proposed [6], [7], [8]: 

1) Variational     autoencoders (VAEs) lever-

age     the Evidence Lower Bound and KL-diver-

gence to map the latent space representation to 

a     prior distribution, typically a unit Gaussian [9], 

[10]. The latent representation is found by sampling 

from the encoded     distribution, while the final data 

product is obtained     by decoding the latent repre-

sentation back to the original     dimensionality. 

2) Adversarial     autoencoders (AAEs) lever-

age     an adversarial procedure to obtain reconstruc-

tions. They calibrate the aggregated posterior 

of     the latent distribution by matching it to an im-

posed prior     distribution [11]. 

Novelty detection as applied to the domain of plane-

tary exploration was spearheaded by Kerner et al. [1], 

[12]. In these works, the authors established a dataset 

of the Martian terrain for the purpose of developing 

and testing novelty detection algorithms. They imple-

mented and analyzed a swath of techniques, including 

PCA, Reed-Xiaoli detectors, GANs, and CAEs. 

Various loss functions and novelty scores were used to 

compare the advantages and disadvantages of each de-

tector. It was determined that, while autoencoders only 

performed on par or marginally better than other meth-

ods, they were easier to visualize and thus could be 

used to added more meaningful context to detections 

than alternative approaches. 

3 METHODOLOGY 

In this work we present a novelty detection processing 

and evaluation pipeline that leverages TensorFlow 2 to 

design and build autoencoder networks. As the pur-

pose of this pipeline is to conduct rapid model devel-

opment, many network configurations have been 

tested to date. Here, to represent the processing pipe-

line’s capabilities, we introduce two preliminary mod-

els created using the pipeline. The first model is a 

baseline CAE, the other is a VAE. Although adversar-

ial methods show promise in the area of novelty detec-

tion, their analysis has been saved for future research. 

So far, the processing pipeline has been equipped with 

the Martian dataset introduced in [1], and with a pre-

liminary dataset of the Lunar environment. Since the 

Martian dataset was already established in the field, it 

served as a sound starting point to begin building and 

testing architectural variants. It also served as a plat-

form to automate the training procedure and build a 

code base that was highly modular, allowing quick pa-

rameter tuning, training, and performance metering. 
Once a reasonable baseline model was built using the 

Martian data, we optimized the baseline on the Mar-

tian data, expanded our research to assess the utility of 

a VAE on the same data, and retrained the baseline 

CAE on the Lunar set.  

3.1    Datasets 

Martian Dataset. The Martian dataset, derived from 

Kerner et al.’s work in [1], is composed of images 

taken by the Curiosity rover using its Mastcam imag-

ing system. The resulting 6-channel multi-spectral im-

ages span the 400-1100nm range [13]. Novelties were 

labelled on the image level, and were defined to be ei-

ther geologic anomalies (meteorites, floating rocks, 

veins) or the direct result rover actions (drill hole tail-

ings or wheel scuffed rocks); all other images were la-

belled typical (Fig. 1(c,d)). Each image was cropped 

such that input images had dimension 64x64x6. Only 

typical images were used for training (9302 images) 

and validation (1386 images). When testing, roughly 

half of the data was typical (426 images), the other half 

was novel (430 images). 
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Lunar Dataset. The Lunar dataset is composed of im-

ages taken from the Chang’E-4 Lander’s Terrain Cam-

era (TCAM) and Yutu-2’s Panoramic Camera 

(PCAM) [6]. Images from both the TCAM and PCAM 

are 3-channel RGB images spanning the 420-700nm 

range. Novelties in these datasets were defined to be 

suspected meteorites, young craters, and image arti-

facts on otherwise normal surface features, such as sat-

urated pixels.  In total, the Lunar set contained 278 im-

ages. To maintain consistency with the Martian set, 

each image was fragmented into 64x64 patches, mak-

ing the input dimension 64x64x3. In this study only 

the PCAM images were used for training and testing. 

Though the TCAM images were available and la-

belled, computational considerations early the pipe-

line’s life prohibited use of the whole set. 

After tiling the 168 PCAM images into 64x64 patches, 

90,720 images were created with 39 novelties. Filter-

ing was carried out to remove image patches from por-

tions above the horizon whose pixels were all, or 

nearly all black. Other artifacts, such as green channel 

dominance and discolorations were difficult to filter 

and hence were kept in the Lunar set. In the end the 

training set consisted of 69,840 images, 12.5% of 

which were set aside for validation. The test set con-

tained 10,940 typical images and 39 novel images. 

Dataset Generation. We used a GTX 1080 Ti graph-

ical processing unit (GPU) to accelerate our training 

cycles; with almost 70’000 images in the Lunar set, we 

opted to use generating functions to read our data as 

opposed to loading them into memory all at once. 

Since the processing pipeline is expected to be used 

for algorithmic experimentation on large planetary da-

tasets, and with the eventual objective of running the 

algorithm in operational field tests, this decision fits 

with our project goals.  

During training, data is pre-fetched into the com-

puter’s memory buffer. Immediately before being 

loaded into the GPU for training, the images are 

batched, mapped through a normalizing function, and 

cached for subsequent epochs. As described above, 

some image filtering was conducted for both the Mar-

tian and Lunar sets; these filtering operations are im-

plemented in the generating function itself. In terms of 

speed, this approach prolonged the data reading pro-

cess somewhat (as opposed to pre-filtering the data). 

However, it provided increased flexibility when man-

aging multiple datasets, invariably with different for-

matting, structure, and required augmentations. 

3.2 Baseline Convolutional Autoencoder 

The baseline convolutional autoencoder has the struc-

ture shown in Fig. 2. The dimension of the latent space 

is 16x16x3 (green, middle), which marks a 32-times 

reduction for the Martian dataset, and a 16-times re-

duction for the Lunar dataset. Various encoder/de-

coder depths were tested; in most cases, deeper net-

works tended to increase performance. The baseline 

CAE in Fig. 2 has six convolutional layers and six 

transpose convolutional layers in the encoder and de-

coder respectively. Each reduction in image size was 

achieved using a double stride. Similarly, in the de-

coder, to increase the image size a stride of two was 

used during transpose convolutional operations. 

Preliminary experiments indicated that the network 

provided in [1] could be improved by increasing the 

capacity of the model. Our intention was that, by in-

creasing the capacity of the model, more subtle fea-

tures could be extracted from both the encoding and 

decoding steps, boosting detection performance in 

structurally subtle images.  

Normalization. Normalization for the data offered an 

unforeseen avenue of exploration when developing the 

baseline CAE. Work done in [1] used a normalization 

approach whereby the images were normalized along 

the batch dimension only. With this method, normali-

zation statistics were calculated pixel-wise, each pixel 

Figure 2: Architecture of the baseline convolutional autoencoder (CAE). Input channels vary between 6 for the 

Martian set, and 3 for the Lunar set. 
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location being standardized to a unit Gaussian. We im-

plemented this normalization tactic in our pipeline, 

naming it ‘standard pixel-wise’. We found max-min 

scaling methods particularly useful for visualizing the 

images, however, convergence was less effective. The 

normalization method that was eventually selected is 

like the standard pixel-wise approach, but it calculates 

the statistics over each channel as well. This way, each 

channel is mapped to a unit Gaussian independent 

from the other channels. This approach has the ad-

vantage that channel-wise outliers are mapped further 

from the mean, conceptually allowing them to be eas-

ily identified with a variance threshold. 

Parameter Selection. Batch normalization was built 

into the baseline CAE and immediately improved con-

vergence when training. Learning rates were varied 

between 0.00001 and 0.1. It was found that tuning the 

learning rate also improved network convergence con-

siderably, especially after adding or removing network 

capacity. The learning rate that was selected for the 

baseline CAE was 0.001. A leaky ReLU activation 

was used with a rate of 0.1, the kernel size for all con-

volutional operations was set to 5, zero padding was 

employed in all layers., and batch size was set to 100. 
For regularization, early stopping was implemented 

with a patience of 10 epochs and dropout layers were 

added with a mild drop-rate of 0.05. Managing the pa-

tience and dropout rate was troublesome in the early 

stages. When the patience was below 3 epochs and a 

drop-rate higher than 0.1 was used, the network would 

stop training prematurely. The main reason for this is 

likely because when the drop-rate was high, training 

and validation losses became volatile, particularly 

when the learning rate was also high. This volatility 

would lead to validation loss increases for several 

epochs, at which point the training would be halted. 

When the number of trainable parameters was in-

creased, the patience was set to 10, and the learning 

rate was set correctly, this effect was diminished. 

Loss Functions. The loss functions used include mean 

squared error (MSE), structural similarity index 

(SSIM), and a linear combination of the two functions 

(Hybrid). The relative contribution of the MSE and 

SSIM terms are controlled by a tuning parameter λ. 

The λ parameter played an important role in optimiz-

ing the training procedure for Hybrid-trained net-

works. Though many λ parameters were tested, the 

baseline CAE presented here used a value of λ=0.1. An 

in-depth description of each of these loss functions is 

given in [1]. 

Novelty Scores. The novelty scores were calculated 

between the original input image and the reconstructed 

output. Implemented scores include (i) L2 norm (ii) 

Outlier Count, a score proposed in [1] to assess how 

many pixels fall above the mean pixel intensity, and 

(iii) the loss function itself. 

Performance Metrics. Since novelty detection is ef-

fectively a binary classification problem, many met-

rics have already been developed to monitor perfor-

mance. One of the most well known is the receiver op-

erating characteristic (ROC) curve, which plots the 

true positive rate as a function of the false positive rate. 

Other metrics used include Precision @ N, and preci-

sion-recall curves. All of these metrics have been built 

into the evaluation portion of the processing pipeline. 

Other metrics that are less common but have been 

found to provide insight into the performance of the 

detector were also included. One such example is an 

F1-score versus threshold plot. Since we are interested 

in building a detector for systems level operations, it 

was essential to apply metrics more tangible than gen-

eral performance curves. The most conventional of 

these is the confusion matrix of the classifier; although 

it is difficult to compare general performance between 

detectors with confusion matrices, it is easier to under-

stand the performance of a single detector. 

Figure 3: (a) Visualization of a CVAE. (b) Diagram of encoder and decoder interface; the output of the encoder is 

the Gaussian approximation of the posterior distribution. 
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3.3 Variational Autoencoder 

The main difference between a Variational Autoen-

coder (VAE) and a CAE is that instead of directly 

mapping the input image into the latent space, the 

VAE attempts to model the distribution of the latent 

space (Fig. 3). 

A Convolutional Variational Autoencoder (CVAE) 

parameterizes the posterior distribution with a Con-

volutional Neural Network (CNN). Outputting the 

means and variances of a multivariate Gaussian in the 

latent space, a CNN based decoder then consumes the 

sample generated from the posterior and reconstructs 

the image to its input dimension. 

Loss Functions. The algorithm aims to maximize the 

Evidence Lower Bound (ELBO) by optimizing the 

Kullback-Leibler divergence between the approxi-

mated posterior and a standard Gaussian (the 

imposed prior). This forces the latent distribution to 

be as close to a standard Gaussian as possible.  

Novelty Scores.  The CVAE was trained only on typi-

cal images such that it generated an approximation of 

the distribution of the latent space particular to typical 

images. Since the encoder approximates the latent 

multivariate Gaussian, a natural choice for a novelty 

score is the distance between a random sample from 

the learned latent distribution on a test data point and 

the approximated distribution of the latent space. In 

this case, the Mahalanobis Distance [14] will be used 

as the distance metric. The intuition is that when typi-

cal images are encoded the predicted distribution pa-

rameters will resemble the distribution approximated 

by the encoder during training, and hence have a low 

novelty score. 

4    RESULTS 

Parameter selection for the baseline CAE was 

Figure 4: ROC curves for baseline CAE when trained on the Martian set with (a) MSE, (b) SSIM, and (c) Hybrid 

losses. 

Figure 5: (a) F1 score as a function of normalized threshold for different loss functions and (b) the confusion matri-

ces at the best F1 score. 
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conducted on the Martian dataset first. After the base-

line CAE reached an acceptable level of performance, 

it served as a benchmark when applying it to the Lunar 

terrain and when implementing the VAE. 

4.1     Baseline Convolutional Autoencoder: Mars 

ROC curves for the baseline CAE are shown in Fig. 4. 

Here it can be seen that the best performance was 

achieved with the Hybrid loss at an Area Under the 

Curve (AUC) of 0.691. This outperforms the best de-

tector from [1], also using a Hybrid loss, with an AUC 

of 0.650. Performance improvement for the SSIM-

trained detector was also observed when the loss func-

tion itself was used as the novelty score. These im-

provements come at the cost of performance volatility. 

For example, when scoring images with the L2 norm 

for either SSIM or Hybrid-trained models, perfor-

mance was worse than a random classifier. In contrast, 

the network varieties given in [1] do not fall below 

AUC=0.56, and thus have a lower AUC variance 

across detection methods. For each loss employed dur-

ing training, the best results were obtained when scor-

ing with the loss itself. Across the board, the Outlier 

Count score performed only marginally better than 

random. 

Triangles in Fig. 4 denote the location of the highest 

F1 score, which measures the classifier quality using 

both the precision and recall. The true positive rate at 

each of the best F1 scores stays above 0.9; however, 

the corresponding false positive rates remain high, 

above 0.6 in all cases. The profile of the F1 score ver-

sus the (normalized) threshold is shown in Fig. 5 for 

each loss tested. Here, the MSE curve has its best F1 

score at a threshold of 0.02; similar thresholds were 

found for all poor performance classifiers. Low thresh-

olds on this level indicate that the best F1 score is 

found when the detector is heavily biased towards 

novel class predictions.  

Notice that the two highest performing detectors also 

had the two highest thresholds aligned with their best 

F1 score. On the right side of Fig. 5 the confusion ma-

trices at the best F1 scores are shown, where the col-

umns are normalized to the number of actual class 

samples. As expected from the curves in Fig. 4, even 

at thresholds of 0.27 and 0.20, for the SSIM and Hy-

brid losses respectively, the majority of the total sam-

ples are predicted to belong to the positive (novel) 

class. 

Although the Hybrid-trained detector has the highest 

AUC, the SSIM-trained detector has a slightly higher 

best F1 score. As shown in Fig. 5, this difference is 

exhibited by a lower false positive rate and a higher 

true negative rate; true positive and false negative rates 

between the SSIM and Hybrid detectors are consistent. 

4.2    Variational Autoencoder: Mars 

Displayed in Fig. 6 is the ROC curve for the CVAE 

novelty detector. It achieved an AUC of 0.693, outper-

forming the result from [1] and performing slightly 

better than the Hybrid loss for the baseline CAE.  

Looking at the confusion matrix in Fig. 7(bottom), at 

the threshold that outputs the best F1 score, the classi-

fier tends to catch mostly novel images, with a recall 

value of 0.965. However, the CVAE tends to misclas-

sify most of the typical images as novel, achieving a 

precision of only 0.555. This combined with the low 

Figure 7: (top) Distances between sampled data 

points and individual test points and (bottom) confu-

sion matrix at best F1 score for CVAE. Best F1 

score: 0.706 at a threshold of 0.025. 

Figure 6: ROC curve for the CVAE novelty detector. 
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threshold indicates that the classifier biases its predic-

tions towards novel class labels. Supplementary to 

this, Fig. 7(top) shows the Mahalanobis Distance of 

each data point in the test set. Separation is observed 

for novel data points at distances above 0.6. However, 

at distances below 0.4 novel and typical data points are 

clumped together, highlighting a limitation of distance 

metrics for novelty detection. 

4.3     Baseline Convolutional Autoencoder: Moon 

Resulting AUCs are displayed in Tab. 1 when apply-

ing the baseline CAE with the same parameters de-

fined in Section 3.2 to the Lunar set. Tab. 1 also con-

tains Hybrid-trained results when the λ parameter 

was tuned between 0.01 and 1.0.  The ROC curves of 

the four best performing detectors is shown in Fig. 8. 

As was the case on the Martian set, the Hybrid-

trained and SSIM-trained networks outperformed 

their MSE variants. One marked difference between 

the Martian and Lunar set is the efficacy of the L2 

norm score for networks trained with SSIM and Hy-

brid losses. Although the L2 norm was the worst per-

forming score on the Martian set, it consistently gave 

the highest AUC for each of the Hybrid networks, in-

dependent of the tuning parameter (Tab. 

1).

 

Figure 8: ROC curves baseline CAE detectors 

trained on the Lunar set with Hybrid and SSIM 

losses. 

5    DISCUSSION 

The results presented demonstrate noticeable im-

provements to current state-of-the-art novelty detec-

tors. When trained on the Martian set, the baseline 

CAE outperformed the detector proposed in [1] by 

6.3%, while the VAE outperformed by 6.6%. 

5.1     Operational Viability 

Operational viability refers to the ability of an 

algorithm to realistically help guide mission-level ob-

jectives. To understand this aspect more concretely for 

the networks described in this study, it helps to con-

sider specific quantitative results. The profile of an 

ROC curve provides this type of tangible insight. For 

instance, one point along the ROC profile 

Table 1: Area under the ROC curve for different 

losses and novelty scores when the baseline CAE was 

trained on the Lunar set. 

 

that has already been used to assess the performance 

of a single detector is the threshold that yields the high-

est F1 score (Fig. 5). Unfortunately, the false positive 

rates were far too high to return reliable detections. 

Due to the class imbalance, the high false positive rates 

that were observed on the Martian set become dramat-

ically more pronounced on the Lunar set. 

To see this in action, the confusion matrix of another 

point has been selected, denoted by squares in Fig. 4(c) 

and Fig. 8. These points were chosen because they rep-

resent the location of the highest true positive to false 

positive ratio. The associated confusion matrices are 

Figure 9: Confusion matrices of the highest 

true positive to false positive ratio on (top) the 

Martian set and (bottom) the Lunar set. 
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shown in Fig. 9. While the false positive rates only dif-

fer by 0.004, the class imbalance on the Lunar set in-

vokes approximately 100-times less true positives than 

false positives, as opposed to 2.5-times more on the 

Martian set. It is worth noting that the imbalanced test 

set in the Lunar dataset is more representative of oper-

ational conditions; in reality, novel data will by defini-

tion make up a small fraction of considered images. 

One way to consider the utility of the novelty detector 

is as a first pass before sending images labeled ‘novel’ 

on for human inspection. In this role, it has boosted the 

proportion of novel images from 0.36% (39 out of 

10,979) to 0.95% (17 out of 1,781).  

5.2     Future Work 

The work presented in this paper leaves ample room 

for future research, some of which is already under-

way. Perhaps the most critical development needed to 

fully address the operational viability of a Lunar nov-

elty detector is a more established dataset. Currently, 

in partnership with Mission Control Space Services, 

we are constructing an indoor Lunar analogue terrain 

site. Beyond the sheer number of images, more con-

sistent and deliberate labels are crucial, especially for 

the purpose of novelty detection where contamination 

of novel samples in the training set has been shown to 

decrease novelty detection performance [10]. 

Another potentially fruitful line of research is pre-

sented in [12]. Here, the authors leveraged a CAE to 

create reconstruction error maps that were then fed to 

a convolutional neural network (CNN) for binary clas-

sification. A benefit of this approach is that the CNN 

can extract novel features from within the images 

themselves. This contrasts the methods used in this 

study where classifications were conducted by setting 

thresholds on global image properties. Preliminary re-

search in this direction have shown positive results. 

6    CONCLUSIONS 

In this work, a processing pipeline was introduced that 

emphasizes fast model development and performance 

monitoring for the task of novelty detection. Results 

from tests on two autoencoder variants were shown 

and experiments were run on a preliminary Lunar da-

taset. The baseline CAE, based on the work done in 

[1], incorporates multiple design changes and was 

shown to achieve high performance under certain con-

ditions. However, this came at the cost of stability 

across detection methods. The VAE performed at the 

same level as the baseline CAE on the Martian set, and 

though some separability was seen between novel and 

typical samples, it was not enough for distance-based 

metrics to be fully effective. 

Operational viability considerations were highlighted 

for specific threshold selections of the baseline CAE. 

Though both the CAEs and VAE were biased towards 

predicting the novel class when using the best F1 

score, when more intentional threshold selections were 

made according to the ROC profile, operational viabil-

ity improved. Regardless, the detectors are currently 

insufficient to be used operationally. They may move 

deeper into the viable regime by dramatically lowering 

the false positive rate such that the number of truly 

novel predictions dominates the total number of posi-

tive predictions. Future work involves the develop-

ment of an established, well labelled Lunar dataset, the 

application of more complex autoencoding frame-

works, and the addition of a CNN for binary classifi-

cation. 
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