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ABSTRACT

In recent years, there is an increasing demand for or-
bital robotic missions for various reasons such as life-
extension of functional satellites, reuse the unique or-
bital slots and to reduce the risk of orbital collision. In
such robotic missions, the satellite’s autonomous nav-
igation capability is a critical component that enables
it to perform relative navigation, inspection, and repair
with minimal human-in-loop intervention. Pose esti-
mation is an important task within autonomous GNC
for spacecraft in orbit. There have been recent, new
development of deep learning based pose estimation
algorithms in order to meet growing demands of au-
tonomous orbital applications. This paper presents a
new keypoint-based framework using Convolutional
Neural Network models for pose estimation of known
non-cooperative targets in orbit, which is thoroughly
compared to existing state-of-the-art algorithms also
based on deep learning. Within the proposed pose esti-
mation pipeline, a ResNet-based architecture used for
object detection, a Scale-Aware High-Resolution Net-
work (HigherHRNet) used for keypoint regression and
PnP-RANSAC for computing the pose. The frame-
work is benchmarked with the SPEED dataset as well
as the Soyuz dataset from STAR LAB Orbital Visual
Simulator and the results were presented.

1 INTRODUCTION

In the last decade, there is a growing interest in orbital
robotic missions to autonomously carry out On-Orbit
Servicing (OOS) and Active Debris Removal (ADR).
To enable a successful orbital robotic mission, the
modern Guidance, Navigation, and Control (GNC) so-
lutions must support more autonomous functions like
relative navigation, rendezvous, and other manipula-
tions such as capturing the target or debris. OOS and
ADR are considered key capabilities for spaceflight
in this century and multiple technology demonstration
missions including PROBA-3 [1] by ESA, PRISMA
[2] by OHB Sweden. Recently, the first commercial
OOS of a geostationary satellite (IntelSat-901) car-
ried out by Space Logistics using the MEV-1 (Mis-
sion Extension Vehicle) satellite platform. MEV-1

docked with the IntelSat satellite and re-positioned it
to the designated spot and continues to provide in-orbit
station-keeping services [3].

Both OOS and ADR mission operations involve orbital
rendezvous with the target before performing relative
navigation at the close proximity. Multiple sensor op-
tions are available to perform relative navigation, how-
ever, monocular cameras are widely considered be-
cause of the lower hardware complexity, cost, weight
and power consumption. As with every sensor, there
are limitations associated with the monocular camera
such as its inability to provide depth measurements,
sensitivity to adverse illumination conditions. During
close proximity operations, the GNC system needs an
estimate of 6 Degree-of-Freedom (DOF) pose of the
target, i.e., the relative position and attitude, that rep-
resents a piece of key information for the navigation
system.

This work discusses the deep-learning framework for
spacecraft pose estimation using keypoints for rela-
tive navigation. The framework presented is within
the family of keypoint-based methods and its perfor-
mance represents the state-of-the-art solutions in pose
estimation for known non-cooperative targets in or-
bit. This paper further shows qualitative comparisons
and analysis of two representative approaches or fam-
ilies of methods for deep learning based pose estima-
tion, namely keypoint approach and non-keypoint ap-
proach (also known as direct approach that performs
regression/classification directly on pose data). The re-
sults have been obtained using two datasets for testing
and validation: ESA-Stanford’s benchmark dataset,
Spacecraft PosE Estimation Dataset (SPEED) based
on PRISMA mission [4] and the photo-realistic Soyuz
dataset generated by STAR LAB’s Orbit Visual Simu-
lator (OrViS) [5].”

2 BACKGROUND

Estimating the camera pose, i.e., the position and ori-
entation, from a single image is a fundamental com-
puter vision problem. The camera pose represents crit-
ical information to many robotic applications such as
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localization and navigation. During the relative pose
estimation process, the algorithm predicts the rigid-
body transformation from the object’s coordinate sys-
tem to the camera coordinate system.

The major approaches that are used today for the
pose estimation and tracking are the fiducial-, model-
and non-model-based approaches. The fiducial detec-
tion and tracking utilize the known markers on the
tracked objects and identification of the detected fidu-
cials allow to match 2D image features with their cali-
brated 3D features. Fiducials are suitable for repetitive
close-range applications, but it is impractical to use in
all cases. Model-based techniques rely on the prior
knowledge of the target object and the target’s pose
can be estimated via feature-detection and matching,
following non-linear pose refinement. Whereas, Non-
Model-based techniques do not assume prior knowl-
edge of the target object’s geometry, texture or other
visual identifications. These methods solve for the op-
timal camera pose or motion through recovering iden-
tical features in the images and under epi-polar or mo-
tion field constraints.

One of the main challenge faced by the feature point
extraction methods is a sharp change in shadows, ap-
pearance change due to rotation/tumbling motion, the
low Signal-To-Noise Ratio (SNR) and the high con-
trast which characterize the space images. Many of the
algorithms may have difficulties with image-to-model
feature correlation, feature persistence for tracking
over more than a few frames, foreground-background
segmentation, and detection and correction of correla-
tion and tracking errors.

3 LITERATURE REVIEW

With recent advancements in deep learning and the
popularity of the ESA’s Spacecraft Pose Estimation
Challenge enabled new developments with the state-
of-the-art performance in the visual pose estimation al-
gorithms. Several research works and their results are
published based on this competition including Space-
craft Pose Network (SPN) [4], Pose Estimation with
Deep Landmark Regression [6], Pose Estimation with
soft classification [5], segmentation driven approach
[7].

SPN [4] used a combination of classification and re-
gression approaches to computing the relative pose. It
predicts the bounding box of the satellite in the im-
age with an object detection network and the bounded
sub-image is processed through a sub-network to per-
form classification on the 3D pose. During the classi-
fication, the SO3 rotation group is discretized into m
uniformly distributed fine-bins representing the base
rotations and the network retrieves the n-most relevant
rotations from the feature map of the detected object.
The translation of the pose is estimated via the con-
straints from the bounding box dimensions to fit the
entire object with the predicted rotation. Chen et.al [6]

presented a keypoint-based approach to estimate the
pose of the satellite. They regress the bounding box
around the satellite using an object detection CNN and
crop the image. The cropped image is then fed into
the keypoint regression CNN to obtain the 2D loca-
tions of the landmarks. Finally, the 2D-3D landmark
correspondences and non-linear optimization used to
compute the pose estimates. Gerard [7] presented a
segmentation-driven approach where the segmentation
stream used to identify the object region and regres-
sion stream to predict 2D keypoint position. Finally,
the iterative PnP with a RANSAC-based version of the
EPnP is used to compute the pose. One of the lim-
itations is that the wrong prediction of 2D keypoint
will lead to inaccurate PnP pose estimate. Proenca and
Gao [5] proposed a hybrid approach which involves a
regression branch for location estimation and a proba-
bilistic soft-classification framework to predict the ori-
entations. Dhamani et. al [8] presented a CNN-based
approach to estimate the relative bearing (azimuth and
elevation). The algorithm was developed for and de-
ployed on the Seeker-1 mission, a CubeSat class tech-
nology demonstrator mission, intended to provide rel-
ative bearing estimates of the non-cooperative Cygnus
vehicle from ranges of 5 to 40 meters in real-time (>1
Hz). Harvard et.al [9] proposed an architecture that
uses existing keypoint localization algorithms to iden-
tify robust keypoints and then train a CNN on this lim-
ited set of keypoints (with feature descriptor compo-
nents) to create specialized descriptors. For each land-
mark, a visibility map generated through ray tracing.
PnP-RANSAC was used to estimate the pose and non-
linear filter to track the pose.

4 POSE ESTIMATION FRAMEWORK

The pose-estimation framework used in this work is
similar to the approach presented in [6]. The frame-
work utilizes object detection, followed by the key-
points estimation, finally the PnP-RANSAC to esti-
mate the pose of the target object. Two models from
different datasets were tested in this work, and they are
the TANGO spacecraft in the SPEED dataset and the
Soyuz spacecraft from the STAR LAB’s OrViS (previ-
ously named as URSO in [5])

4.1 Object detection

To detect the bounding box of the image, a ResNet-
based Faster R-CNN used as the backend. ResNet-
50 [10] with the pre-trained weights from the COCO
dataset used to detect the bounding box of the object.
To train the ResNet algorithm for bounding box detec-
tion the ground truth coordinates were obtained from
the keypoint coordinates with some relaxations to the
lengths between the minimum and maximum pixel co-
ordinates.
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Figure 1: Keypoint-based Satellite Pose Estimation Framework

4.2 Keypoint regression

The bounding box in an image is cropped and pro-
vided as input to the keypoint regression framework.
The inputs to the training the keypoint regression are
the bounding box coordinates and the locations of the
landmarks in the original image. Then crop the image
and convert the landmark locations to the correspond-
ing cropped image coordinates. Each landmark input
has three columns, two for pixel coordinates (x and
y) and one for the visibility. The landmark visibility
value is set to either 0 or 1, depending on whether the
landmark is visible in the image.

vi =

{
1 if visible to camera & inside image frame
0 otherwise.

We used HigherHRNet [11] to regress the 2D land-
mark locations and it uses a HRNet [12] as back-
bone. HigherHRNet provides an output at two dif-
ferent scales 1/4 and 1/2. We used the architecture
that has 32-channels in the highest resolution feature
maps. The output of the model depends on the number
of landmarks in the particular model. For example, the
SPEED model has 11 keypoints and the Soyuz model
has 21 keypoints.

4.3 PnP + RANSAC

With the known 2D and 3D correspondences, PnP al-
gorithm can be applied to compute the camera pose.
There are possibilities of false correspondences among
the derived keypoints, and to eliminate the outliers a
RANSAC-based outlier rejection applied before esti-
mating the camera pose. Unlike conventional sam-
pling techniques that uses as much as data possible to
obtain an initial solution, RANSAC generates solution

by using the minimum number observations with the
smallest set possible to estimate the underlying model
parameters and then carry on to grow this set with con-
sistent data inputs.

5 EXPERIMENTS

We conducted experiments on two different mod-
els from the SPEED dataset and the OrViS - Soyuz
dataset. The models were trained using PyTorch on
NVIDIA Quadro P4000 GPU. For training the model
to detect bounding box, the input size of the image is
set to 320 with a batch size of 8 and learning rate of
0.005, SGD with a momentum of 0.9, a weight de-
cay regularization of 0.0005. During the training, the
models are loaded with the pre-trained weights from
COCO dataset and further tuned to identify the ob-
ject using the bounding box coordinates. Input image
augmentations added to make the model more robust.
The training converges quickly within 20-30 epochs
for both the models.

For training the model to regress the locations of the
keypoints, the input image size is set to 640 with
a batch size of 4 and an adam optimizer is used
with 0.001 learning rate and 0.9 momentum. For
keypoint regression, the training time is quite exten-
sive and the image augmentation plays a key role
in identifying the right keypoints. Image augmen-
tation performed on the input image includes ran-
dom rotation ([−30◦, 30◦]), random translation up to
([−30%, 30%]), coarse dropouts, Gaussian Noise, ran-
dom brightness and contrast.

6 RESULTS

SPEED dataset

In the Pose Estimation Challenge, the geometry of the
actual model kept as withheld information, different
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(a) (b) (c)

Figure 2: Detected Bounding box and Keypoints using trained model for SPEED dataset

approaches were used across the competition entries
either to find the true location or to overcome this. We
used a structure-from-motion approach to estimate the
actual locations of the interested keypoints. A Factor
graph-based approach used to construct the relations
between the keypoint locations in the images to the ac-
tual pose of the respective image [13]. We selected 10
images and manually identified the coordinates of the
visible keypoints (out of 11 interested points) in each
of these images.

Once the ground truth information is collected, the
models are trained independently to detect the satel-
lite and the respective keypoints. The trained mod-
els were used to inference the images in the SPEED
test dataset and the estimated poses were uploaded to
Kelvin’s Pose Estimation Challenge post-competition
submission portal. The results were summarized in ta-
ble 1 and the current solution ranked next to the com-
petition winner UniAdelaide, with the best score of
0.0096 and the real image score of 0.28973. Sam-
ple images from during inference, with the detected
bounding boxes and the keypoints, are shown in fig. 2.

Rank Name Best
Score

Real
Image
Score

1 UniAdelaide 0.0086 0.3634

* STAR LAB key-
point method 0.0096 0.2897

2 EPFL cvlab 0.0204 0.1040

3

pedro fairspace
(STAR LAB
non-keypoint or
direct method)

0.0554 0.1476

4 stanford slab 0.0610 0.3221
5 Team Platypus 0.0674 1.7117

Table 1: Top scores of Pose Estimation challenge

Soyuz dataset

The Soyuz dataset from OrViS contain 5000 images,
of which 10% reserved for testing and another 10%
for validation. The results were recorded as the mean
absolute location error, the mean angular error. For
the keypoints-based approach the 21 keypoints were
selected for the soyuz spacecraft.

The Tango spacecraft model in SPEED dataset is sim-
ple with 11 keypoints representing the target boundary
limits and hence it is easier to compute the visibility
of the keypoints by the simple intersection of planes.
However, the Soyuz model has thousands of vertices
and faces, and hence a simplified CAD model created
as shown in fig. 3 to compute the visibility via ray
tracing. Python package trimesh [14] used to perform
ray tracing and to compute the visible points using the
ground truth relative pose for each image. The ground
truth samples of the bounding box locations and key-
point coordinates along with their visibility shown in
fig. 4.

Figure 3: Simple Soyuz Model used for ray-tracing to
compute points visibility (ground truth)

6.1 Comparison

Both the keypoint and the non-keypoints based ap-
proaches provide the advantages of its own. The
keypoints-based framework is relatively simple and
more scalable. Whereas, the direct (non-keypoint)
framework provides robustness irrespective of the
camera intrinsic parameters. The orientation resolu-
tion achievable with the direct approach depends on
the number of bins used to encode the quaternion space
during probabilistic soft classification. With the in-
crease in the number of bins, the number of parame-
ters in the trained model increases. For example, with
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Figure 4: Samples of Bounding box and keypoint estimates for Soyuz dataset (green indicates visible keypoints vi = 1
and red indicates occluded keypoints vi = 0 )

64×64×64 bins, a more accurate result for the SPEED
dataset was achieved and it requires around 500M pa-
rameters [5]. However, the number of parameters for
both object detection and the keypoint-based methods
is around 50M-80M depending on the configurations.
The results for the Soyuz dataset using both the direct
and keypoint approach is summarized in table 2.

Method Location
Error

Angular
Error

STAR LAB non-keypoint
or direct method [5]

0.8m 7.4◦

STAR LAB keypoint
method

0.3m 4.9◦

Table 2: Results for different approaches for Soyuz
dataset

7 CONCLUSION

This work presented a keypoints-based deep-learning
framework for spacecraft pose estimation employing
different algorithms for both object detection and key-
point estimation while offering performance represent-
ing the state-of-the-art algorithm. The keypoints-based

framework offers better accuracy with a minimum
number of parameters than the direct approach. It pro-
vides the ability to easily modify the pipeline and up-
date the components and test with state-of-the-art al-
gorithms. The keypoint-based framework found to be
more scalable than the direct approach.

7.1 Future work

Further experiments are inline to extensively test and
validate the two approaches in the Ground-based
hardware-in-the-loop experiments using a high-DOF
testbed [15] at the STAR LAB, Surrey Space Cen-
tre. This testbed uses smaller laboratory robotic arm
mounted on a traverser and implements the orbital dy-
namics into the robotic arm motion to simulate the
close proximity motion of the servicer approaching the
target. The testbed designed to operate on an open-
source ROS framework is suitable for testings and val-
idations of autonomous spacecraft GNC systems for
small satellites. Additionally using state estimation fil-
ters during the navigation phase will marginalise the
error in the estimates.
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