
A SIMULATION TOOL FOR IN-ORBIT ASSEMBLY OF LARGE STRUCTURES

Virtual Conference 19–23 October 2020

V. Bissonnette1, C. Bazerque1, S. Trinh1, C. Porte1, G.Arcin1, M. Rognant2, J.-M. Biannic2, C. Cumer2, T. Loquen2,

X. Pucel2

1Magellium, 31520 Ramonville Saint-Agne, France, E-mail: vincent.bissonnette@magellium.fr
2ONERA-The French Aerospace Lab, 31055 Toulouse, France, E-mail: mathieu.rognant@onera.fr

ABSTRACT

The PULSAR (Prototype for an Ultra Large Structure

Assembly Robot) project, aims at developing and

demonstrating core technologies enabling the in-orbit

assembly of the 8m-diameter primary mirror of a

space telescope with an autonomous robotic system.

This paper presents the demonstrator of In-Space As-

sembly in Simulation, which is designed as an inte-

grated simulation tool for the prototyping and devel-

opment of these autonomous assembly technologies.

1 INTRODUCTION

Autonomous assembly of large structures in space is a

key enabling technology for future missions which

will require structures of increasing size, exceeding

the capacity of modern launch vehicles when deployed

as a single piece. One such type of missions is the de-

ployment of space-based telescopes. The James Webb

Space Telescope (JWST)[1], planned for launch in

2021, is a good example of how constraints of the

launch vehicle affect the complexity of the spacecraft

design, with the need for a large number of release

mechanisms to deploy its 6.5m segmented primary

mirror. Future projects, such as the Large UV Optical

Infrared Surveyor (LUVOIR) [2], target even larger

primary mirrors, further increasing the required launch

vehicle volume.

It becomes clear that a paradigm shift is required to

enable this continued increase in spacecraft size and

complexity. The introduction of in-orbit assembly has

the potential to fulfill this need. To this end, the Euro-

pean Commission, through its Space Robotic Technol-

ogies Research Cluster (SRC), has funded the PUL-

SAR (Prototype for an Ultra Large Structure Assem-

bly Robot) project [3]. It aims at developing and

demonstrating core technologies enabling the in-orbit

assembly of the 8m-diameter primary mirror of a

space telescope with an autonomous robotic system.

In the scope of PULSAR, a demonstrator of In-Space

Assembly in Simulation (dISAS) is developed. The

demonstrator addresses the autonomous assembly of a

primary mirror composed of 36 individual Segmented

Mirror Tiles (SMT), using an on-board robotic manip-

ulator. SMTs are equipped with Standard Intercon-

nects (SI), which provide mechanical load, power,

data and thermal transfers between components. SIs

can be actively commanded to connect or disconnect,

enabling the assembly of modular components.

Throughout the assembly process, spacecraft pointing

requirements must be satisfied to maintain communi-

cation with the ground station.

For this purpose, dISAS is designed as an integrated

simulation tool in which a user can model an opera-

tional scenario, create an assembly sequence, and as-

sess its feasibility as a system. The manipulator work-

space can be analyzed and the perturbations it creates

on the spacecraft platform evaluated to help in design-

ing a suitable attitude controller. Moreover, realistic

sensors and actuators can be implemented and directly

interfaced with existing software to enable simulated

hardware-in-the-loop testing.

In this paper we first introduce the use case considered

within the framework of PULSAR. Then the architec-

ture and implementation choices of dISAS are pre-

sented. In section 4, the main hardware components

simulated by dISAS are detailed, and section 5 deals

with the prototyping of the system’s perception and

control features. Section 6 presents the autonomy

components of the system. Finally, preliminary results

and an outlook on future work is provided.

2 OPERATIONAL SCENARIO

In the baseline dISAS scenario, the spacecraft is in its

final orbit at L2, and primary structures (sunshield, so-

lar panels) are already deployed. All 36 SMT are

stacked in a tile container, and secured using their

Standard Interfaces

The goal of the demonstration is to assemble, using a

robotic manipulator mounted on a linear rail, the com-

plete primary mirror structure on its final assembly

site. All SMTs are successively grasped by the manip-

ulator and moved to their final location according to

the assembly plan. The SI are also autonomously com-

manded to dynamically create the necessary mechani-

5038.pdfi-SAIRAS2020-Papers (2020)

mailto:vincent.bissonnette@magellium.fr
mailto:mathieu.rognant@onera.fr

cal and data links. In order to reduce the required ma-

nipulator workspace while still allowing construction

of very large structures, the concept of extended mo-

bility is introduced. To this end, an intermediate Pre-

assembly Site is used to build subassemblies of 5

SMTs, with a sequence of successive rotations and

mating of new SMTs. Subassemblies are then moved

to their final position in a single block, as shown on

Figure 1. During the full scenario, the AOCS subsys-

tem is active, managing the disturbances created by the

movements of the manipulator.

3 SOFTWARE ARCHITECTURE

At software level, dISAS is organized in three main

layers, illustrated in Figure 2. The Simulation layer

creates the 3D virtual environment in microgravity, in-

cluding physics and a realistic visual rendering. This

layer also creates the geometry and behavior models

of the simulated hardware components, such as the

spacecraft platform, SMTs, manipulator, AOCS actu-

ators, etc.

The Functional Layer is where all high-level function-

alities of the autonomous assembly system reside. In

the current dISAS implementation, it contains various

components for the robotic arm path planning and con-

trol, perception functions to perform visual monitoring

and arm servoing based on camera acquisitions, and

the platform AOCS controller.

Finally, the Autonomy layer contains the software

components responsible for the specification and exe-

cution of the assembly sequence. In dISAS, Behavior

Trees are used to compose complex sequences from

atomic actions based on the capabilities of the robotic

system.

The layers of the system are integrated in

TASTE/ESROCOS [4] [5], a novel software frame-

work developed by a related EU-funded project, and

targeted towards space robotics.

4 HARDWARE SIMULATION LAYER

4.1 Simulation Engine

The open-source Webots [6] simulation environment

is used as the core simulation engine in dISAS.

Webots is a generic robot simulator actively developed

since 1998 by Cyberbotics Ltd. It is used in industry,

education, research and several EU-financed research

projects. Since December 2018, it is released under the

free and open-source Apache 2 license. It includes a

large collection of robots, sensors and actuators fre-

quently used in robotics. It uses a custom physics en-

gine based on Open Dynamics Engine (ODE), and a

custom realistic rendering engine based on OpenGL

(WREN). These characteristics made Webots the ideal

candidate for the level of fidelity sought for dISAS.

The geometry, visual representation, and physical

characteristics of the spacecraft components are spec-

ified in configuration files using the Virtual Reality

Modeling Language (VRML). The modelled behavior

Figure 2: dISAS architecture overview

Figure 1: Snapshots of dISAS. Ongoing first preassembly

(top). Robotic arm is moving final subassembly to the pri-

mary mirror (bottom).

5038.pdfi-SAIRAS2020-Papers (2020)

of components such as sensors and actuators is created

by the user in separate executables called controllers.

These controllers can be implemented in a variety of

supported languages such as C, C++ or Python, and

are also used to expose interfaces to other software el-

ements and libraries, through API calls, or middle-

wares such as ROS and ESROCOS.

This is how dISAS models the spacecraft structural el-

ements, such as the bus, payload module, sunshield

beams, and solar panels. The currently-used spacecraft

properties are based on data from the JWST mission,

extrapolated to fit the PULSAR mission scenario.

4.2 Robotic Assembly System

The design process of the dISAS Robotic Assembly

System (RAS) is challenging for numerous reasons,

especially because of the need for high dexterity. RAS

dexterity is a key element as the arm has to achieve

complex operations such as:

- reaching the tiles in the container located at the

very limit of the robot workspace,

- manipulating multiples tiles,

- building the preassemblies.

The current dISAS robotic arm follows a modular de-

sign, based on inputs from another PULSAR demon-

strator. Its specific L-shaped articulation at the center

of the arm allows minimizing the arm when stowed,

while maintaining the necessary reachability capabil-

ity of the arm when fully extended, as shown in Figure

3.

The kinematic model of the Robotic Assembly System

includes a rail and a robotic arm. The importance of

the rail is crucial in the reachability ability of the Ro-

botic Assembly System, enabling it to operate the tiles

at the bottom layer of the SMT container, and to per-

form the necessary movements for reaching the large

primary mirror in the upper part of the spacecraft.

Having the arm and the rail in the same kinematic

model also allows the motion planning block and the

control block of the RAS to simultaneously command

both entities to perform the desired task.

The rail is modelled by a prismatic joint, while the ro-

botic arm is modelled by 7 revolute joints. dISAS al-

lowed to observe that a supplementary degree of free-

dom improves the manipulability of the arm, typically

to reach the tiles stored at the front of the spacecraft.

The redundancy in the kinematic model of the Robotic

Assembly System improves the dexterity of the RAS,

but at the expense of the complexity and the computa-

tion time required to find a motion planning solution.

Low-level simulated hardware control of the manipu-

lator is achieved through a dedicated Webots control-

ler. It exposes a motion command interface from the

RAS control block in the Functional Layer using joint

trajectory data structures. Robot states are published

back in real time as joint states. When a trajectory is

received, a trajectory interpolation method is used in

order to send an admissible robot command at each

simulated time step. The final robot command is exe-

cuted using Webots API calls.

During the remaining months of the PULSAR project,

it is foreseen to perform an optimization of the manip-

ulator to reduce its size, and bring its design more in

line with robotic arms designed for space operations,

such as the Compliant Assistance and Exploration

SpAce Robot (CAESAR) [7].

4.3 Segmented Mirror Tiles and Standard Inter-

connects

SMTs are made of a hexagonal base structure with 13

fiducial markers (AprilTag [8]) and 6 Standard Inter-

faces. Each tile has a unique set of tags for visual de-

tection (see Section 5.2). Its standard interfaces can be

individually locked/unlocked through requests to the

spacecraft controller by the Function Layer.

The SI lock mechanism is modelled with a Webots

connector node, designed to simulate various types of

docking hardware (e.g. mechanical links held in place

by a latch, magnetic links, pneumatic systems, etc.).

The connection supports several kinds of constraints

such max tensile strength, max shear strength, distance

and rotation tolerance.

The visual and bounding object of the Standard Inter-

face is based on the HOTDOCK connector, an inter-

face developed by a partner within the frame of PUL-

SAR.

Figure 3: Visualization of RAS and SMT container is dISAS

5038.pdfi-SAIRAS2020-Papers (2020)

Each tile exposes a control interface through an emit-

ter/receiver pattern, modelling a dynamic communica-

tion bus linking all SMTs and the spacecraft.

4.5 Flexible Appendages Modelling

Large structures, such as the solar panels, the sun-

shield and the primary mirror, are more subject to me-

chanical vibrations due to the low structural damping

in the materials and the absence of other forms of

damping in the vacuum of space.

These vibrations affect pointing performance and must

be taken into account when designing an attitude con-

troller [9]. Thus, the validation of the satellite stability

by dISAS requires to simulate the flexible dynamics

of these appendages in the bandwidth we wish to con-

trol.

Webots relies on an extended version of the ODE

physics engine which was improved by the Webots

maintainers. In particular, Webots includes functions

allowing the application of external torques and forces

in the numerical integration scheme to a specific body

of the simulation. This functionality is used to apply

the reactions wrench of the flexible appendages to the

spacecraft. As the rigid parts of these wrenches are al-

ready evaluated by the general integration scheme,

only the flexible parts of the considered appendices re-

action wrenches are applied.

To evaluate these flexible wrenches, a modal descrip-

tion of flexibility are used [10]. For this purpose, spe-

cific controllers are associated to each flexible append-

age. These controllers use the accelerometer functions

already provided by Webots to measure the current ac-

celeration tensor of the fixation point of the flexible

appendage. These controllers instantiate FlexAppend-

age objects which integrate modal states and evaluate

reaction wrench at each step (Figure 4).

A simple-use case of a spacecraft with two flexible so-

lar panels is illustrated in appendix (Figure 8).

5 FUNCTIONAL LAYER

The Functional Layer (FL) includes all the algorithms

for control, perception and planning as core compo-

nents that can be easily reused and customized. Each

component is implemented as a standalone C++ soft-

ware library, which is then integrated in the FL as

TASTE functions. The TASTE framework takes care

of generating middleware data exchange code from a

user-created interface mode, and data exchanges use

standardized ASN.1 data types. The framework also

supports generation of bridges to other middleware,

such as ROS, for easy prototyping with existing soft-

ware.

5.1 Spacecraft Attitude Controller

During the assembly process, the main issue consists

in preserving a reasonable pointing accuracy of the

satellite to maintain the link with the ground station,

despite the slow evolution of the inertia and frequency

modes of the system and the torque disturbances that

are generated by the motion of the robotic arm.

To address this point, a modular attitude controller

structure described in Figure 5 is used.

To size this controller, a set of Linear Time Invariant

models which cover all the deployment steps are gen-

erated by dISAS. Then, a multi-model approach is

used to analyze the inertia variations and choose the

best controller setting via the Robust Control System

toolbox of Matlab. In a second time, the robustness of

the controller to the flexibility and RAS perturbations

are assessed via the SMAC toolbox [11], and the con-

troller is discretized. Finally a C++ library of this con-

troller is generated by using autocoding tools [12].

5.2 Perception Functions

Perception functions, process images captured on the

demonstrator cameras in order to increase the auton-

omy level and safety of the assembly process.

Figure 4: Block diagram of the flexible perturbation

computation

Figure 5: Attitude controller structure

5038.pdfi-SAIRAS2020-Papers (2020)

Two cameras are mounted on the simulated spacecraft:

one on the end-effector (EE) and one on the spacecraft

structure. Using the captured images, three primary

perception functions are deployed: Tile Localization,

Assembly Monitoring, and Visual Servoing.

Using the AprilTag fiducial markers mounted on the

sides and back of the SMT, Tile Localization will de-

tect the tiles, based on their unique IDs, in images cap-

tured by the External or EE-mounted cameras. Tag

corners coordinates are then extracted, and the pose

with respect to the camera frame is computed using

Perspective-n-Point methods. The pose of the tile is fi-

nally computed using the 2D/3D correspondences, be-

tween 2D coordinates extracted from AprilTag detec-

tion and 3D coordinates of the tile model.

This localization is used to enable a safe, step-by-step

approach to grasp the tiles with the manipulator end-

effector, instead of relying only on open-loop localiza-

tion based on manipulator forward kinematics.

Further emphasizing safety, the Assembly Monitoring

function enables automatic detection of invalid condi-

tions during the assembly. By comparing the currently

localized tiles in the observed scene with an internally

held ground truth model of each assembly step, it

raises an error whenever an out-of-bounds tile of sub-

assembly pose is detected. The error can then be han-

dled by the autonomy component to perform a user-

defined recovery or wait for operator intervention

Finally, Visual Servoing [13] is used to control the

motion of the manipulator using vision feedback. It is

suitable for precise robot movement, in our case to per-

form SMT picking and to precisely position SMTs for

the primary mirror assembly. To this end, the goal of

the control law is to regulate at zero the considered

task function. For position-based visual servoing, this

is commonly the current end-effector pose with re-

spect to a desired end-effector pose. For image-based

visual servoing, this can be the current positions of im-

age features with respect to their desired image coor-

dinates.

Two configurations are considered: eye-in-hand,

where the camera is embedded at the robot end-effec-

tor, and eye-to-hand, where the camera is static with

respect to the robot base and looking at the robot end-

effector. PULSAR exploits both configurations in its

scenarios. The first one is the procedure to perform

mating between the end-effector SI and any SMT SI,

for tile grasping. In this configuration, an eye-in-hand

configuration is suitable, since a camera at the end-ef-

fector can localize the tags near the SMT SI, as shown

in Figure 6. In contrary, when the tile is attached to the

robot end-effector, the EE camera viewpoint is almost

completely occluded. Switching to an eye-to-hand

configuration is then preferable. The external camera

is positioned in order to simultaneously localize the

SMT attached to the robot end-effector and the SMT

targeted for mating, to achieve a desired relative pose

between them.

5.3 Robotic Assembly System Control

This component is responsible for commanding the

Robotic Assembly System. It processes user command

requests (Cartesian pose, joint position, etc.) in order

to plan a collision-free trajectory in the task space.

Then, the necessary joint trajectory commands are

computed and sent to the Webots controller of the

RAS.

The current implementation is based upon the open-

source ROS and MoveIt ecosystem [14]. The MoveIt

framework is exploited for motion planning and colli-

sion checking capabilities. MoveIt is currently used

for testing and development until a custom motion

planning library developed in the frame of PULSAR

is available. Standardized interfaces will allow users

to change the underlying motion planning library with

their own, with minimal changes.

As inputs, the RAS kinematic model is described using

the widely-used URDF specification. Joint types, joint

limits, dynamic properties are detailed in this file. Se-

mantic description of the robot (e.g. which link is the

Figure 6: Eye-in-hand visual servoing in dISAS. EE cam-

era point of view with AprilTag detection and desired vis-

ual features pose in top-right.

5038.pdfi-SAIRAS2020-Papers (2020)

robot end-effector) uses the SRDF specification. 3D

mesh data is also provided for collision checking dur-

ing the path planning process, and is extracted from

the Webots scene model beforehand.

Communication between the RAS control block and

the simulated hardware layer is achieved with ROS ac-

tions and topics, using a TASTE/ROS bridge. The

RAS control component exposes the following inter-

faces:

- end-effector pose goal request, that is the desired

pose of the RAS end-effector with respect to the

robot base frame,

- service to update the state of the RAS, for instance

to attach/detach a tile to/from the robot end-effec-

tor. This is necessary in order to correctly plan a

trajectory when one or multiple SMT are attached

to the RAS end-effector,

- service to update the planning scene, for instance

to initialize the position of the various collision

objects in the scene at start-up,

- online robot state input from hardware simulation

layer to perform closed-loop control.

6 AUTONOMY LAYER

6.1 Assembly Sequencing

The type of autonomy required for the PULSAR sce-

narios can be considered as sequential rather than re-

active. The system follows a completely predefined

assembly plan. Therefore, a sequencing functionality

is used to schedule the assembly steps, keep track of

the various states of the system, ensure safety of oper-

ations by validating input/output conditions, and im-

plement failure recovery.

We use behavior tree formalism to describe the differ-

ent steps of the mission scenario. Behavior trees are

very similar to hierarchical state machines with the

key difference that the main building block is a task

(e.g. “do a pre-assembly”) rather than a state. Formally

speaking, a behavior tree is a single root directed tree

where internal nodes are called “control flow nodes”

and leaf nodes are called “task execution nodes”.

In dISAS, behavior trees are implemented using the

open-source BehaviorTree.CPP library [15]. The se-

quencer library embeds a list of atomic actions which

are bound with functions exposed by the functional

layer components, and can be reused for the various

steps of the assembly. This allows the creation of high-

abstraction autonomous tasks. Trees are described as

an XML file which can include other trees, enabling

complex task composition. Figure 7 illustrates an ex-

ample of such dISAS behavior tree structure.

4 CONCLUSION

This paper provided an overview of the current imple-

mentation of the demonstrator of In-Space Assembly

in Simulation of the PULSAR project.

dISAS has already proven useful in providing a simu-

lation environment to support prototyping and devel-

opments in PULSAR. Next steps include finalizing the

integration and executing a complete, fully-integrated

demonstration mission.

Appendix

We present, on the top left, the angular velocity and,

on the top right, the linear velocity of the main body

when external torques are applied around the different

axes. These external torques are represented in the

Figure 8: Simple-use case of a spacecraft with two flexible

solar panels

Figure 7: Example behavior tree structure of assembly se-

quence

5038.pdfi-SAIRAS2020-Papers (2020)

middle left plot. On the bottom plots, we can also ob-

serve the reaction torques and forces of the solar panel.

Acknowledgements

The PULSAR project is funded under the European

Commission’s Horizon 2020 Space Strategic Research

Cluster Operational Grants, grant number 821858.

The authors would like to thank M. Aurélien Cuffolo,

from Thales Alenia Space in France, partner in the

PULSAR consortium, for providing inputs on mission

analysis, spacecraft sizing and AOCS models.

References

[1] Gardner, J. P. et al (2006) The James Webb Space

Telescope. Space Science Review 123.4:485-606.

[2] LUVOIR Team. (2019) The LUVOIR Mission

Concept Study Final Report. arXiv:1912.06219

[3] Prototype for an Ultra-Large Structure Assembly

Robot. http://www.h2020-pulsar.eu.

[4] M.Perrotin et al.(2012).TASTE : An Open-Source

Tool-Chain for Embedded System and Software De-

velopment. Embedded Real Time Software and Sys-

tems (ERTS2012).

[5] M. Muñoz Arancón, et al.(2017). ESROCOS: a ro-

botic operating system for space and terrestrial appli-

cations. ASTRA 2017 1-8.

[6] Webots. http://www.cyberbotics.com. Commercial

Mobile Robot Simulation Software.

[7] A. Beyer et al. (2018) CAESAR : Space Robotics

Technology for Assembly, Maintenance and Repair.

International Astronautical Congress 2018.

[8] M. Krogius, A. Haggenmiller, and E. Olson.

(2019). “Flexible layouts for fiducial tags”. Proceed-

ings of the IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS).

[9] Blackmore, L., et al. "S. Kang. Instrument pointing

capabilities: past, present, and future." AAS Guidance

and Control Conference. Jet Propulsion Laboratory,

National Aeronautics and Space Administration. 2011.

[10] Tantawi, Khalid HM, Daniel Alazard, and

Christelle Cumer. "Linear dynamic modeling of

spacecraft with various flexible appendages." IFAC

Proceedings Volumes 41.2 (2008): 11148-11153.

[11] Roos, Clément. "Systems modeling, analysis and

control (SMAC) toolbox: An insight into the robust-

ness analysis library." 2013 IEEE Conference on Com-

puter Aided Control System Design (CACSD). IEEE,

2013.

[12] Bourbouh, Hamza, et al. "CoCoSim, a code gen-

eration framework for control/command applications

An overview of CoCoSim for multi-periodic discrete

Simulink models." 10th European Congress on Em-

bedded Real Time Software and Systems (ERTS 2020).

2020.

 [13] F. Chaumette and S. Hutchinson, (2006). “Visual

servo control, Part I: Basic approaches,” IEEE Robot-

ics and Automation Magazine. Vol. 13, no. 4 pp. 82–

90.

[14] Ioan A. Sucan and Sachin Chitta, "MoveIt”,

Available at http://moveit.ros.org/ .

[15] D. Faconti. BehaviorTree.CPP. Available at:

https://github.com/BehaviorTree/BehaviorTree.CPP/

5038.pdfi-SAIRAS2020-Papers (2020)

http://www.h2020-pulsar.eu/
http://www.cyberbotics.com/
http://moveit.ros.org/
https://github.com/BehaviorTree/BehaviorTree.CPP/

