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ABSTRACT 

The PULSAR (Prototype for an Ultra Large Structure 

Assembly Robot) project, aims at developing and 

demonstrating core technologies enabling the in-orbit 

assembly of the 8m-diameter primary mirror of a 

space telescope with an autonomous robotic system. 

This paper presents the demonstrator of In-Space As-

sembly in Simulation, which is designed as an inte-

grated simulation tool for the prototyping and devel-

opment of these autonomous assembly technologies.  

1 INTRODUCTION 

Autonomous assembly of large structures in space is a 

key enabling technology for future missions which 

will require structures of increasing size, exceeding 

the capacity of modern launch vehicles when deployed 

as a single piece. One such type of missions is the de-

ployment of space-based telescopes. The James Webb 

Space Telescope (JWST)[1], planned for launch in 

2021, is a good example of how constraints of the 

launch vehicle affect the complexity of the spacecraft 

design, with the need for a large number of release 

mechanisms to deploy its 6.5m segmented primary 

mirror. Future projects, such as the Large UV Optical 

Infrared Surveyor (LUVOIR) [2], target even larger 

primary mirrors, further increasing the required launch 

vehicle volume.  

It becomes clear that a paradigm shift is required to 

enable this continued increase in spacecraft size and 

complexity. The introduction of in-orbit assembly has 

the potential to fulfill this need. To this end, the Euro-

pean Commission, through its Space Robotic Technol-

ogies Research Cluster (SRC), has funded the PUL-

SAR (Prototype for an Ultra Large Structure Assem-

bly Robot) project [3]. It aims at developing and 

demonstrating core technologies enabling the in-orbit 

assembly of the 8m-diameter primary mirror of a 

space telescope with an autonomous robotic system.  

In the scope of PULSAR, a demonstrator of In-Space 

Assembly in Simulation (dISAS) is developed. The 

demonstrator addresses the autonomous assembly of a 

primary mirror composed of 36 individual Segmented 

Mirror Tiles (SMT), using an on-board robotic manip-

ulator. SMTs are equipped with Standard Intercon-

nects (SI), which provide mechanical load, power, 

data and thermal transfers between components. SIs 

can be actively commanded to connect or disconnect, 

enabling the assembly of modular components. 

Throughout the assembly process, spacecraft pointing 

requirements must be satisfied to maintain communi-

cation with the ground station. 

For this purpose, dISAS is designed as an integrated 

simulation tool in which a user can model an opera-

tional scenario, create an assembly sequence, and as-

sess its feasibility as a system. The manipulator work-

space can be analyzed and the perturbations it creates 

on the spacecraft platform evaluated to help in design-

ing a suitable attitude controller. Moreover, realistic 

sensors and actuators can be implemented and directly 

interfaced with existing software to enable simulated 

hardware-in-the-loop testing. 

In this paper we first introduce the use case considered 

within the framework of PULSAR. Then the architec-

ture and implementation choices of dISAS are pre-

sented. In section 4, the main hardware components 

simulated by dISAS are detailed, and section 5 deals 

with the prototyping of the system’s perception and 

control features. Section 6 presents the autonomy 

components of the system. Finally, preliminary results 

and an outlook on future work is provided. 

2 OPERATIONAL SCENARIO 

In the baseline dISAS scenario, the spacecraft is in its 

final orbit at L2, and primary structures (sunshield, so-

lar panels) are already deployed. All 36 SMT are 

stacked in a tile container, and secured using their 

Standard Interfaces 

The goal of the demonstration is to assemble, using a 

robotic manipulator mounted on a linear rail, the com-

plete primary mirror structure on its final assembly 

site. All SMTs are successively grasped by the manip-

ulator and moved to their final location according to 

the assembly plan. The SI are also autonomously com-

manded to dynamically create the necessary mechani-
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cal and data links. In order to reduce the required ma-

nipulator workspace while still allowing construction 

of very large structures, the concept of extended mo-

bility is introduced. To this end, an intermediate Pre-

assembly Site is used to build subassemblies of 5 

SMTs, with a sequence of successive rotations and 

mating of new SMTs. Subassemblies are then moved 

to their final position in a single block, as shown on 

Figure 1. During the full scenario, the AOCS subsys-

tem is active, managing the disturbances created by the 

movements of the manipulator. 

3 SOFTWARE ARCHITECTURE 

At software level, dISAS is organized in three main 

layers, illustrated in Figure 2. The Simulation layer 

creates the 3D virtual environment in microgravity, in-

cluding physics and a realistic visual rendering. This 

layer also creates the geometry and behavior models 

of the simulated hardware components, such as the 

spacecraft platform, SMTs, manipulator, AOCS actu-

ators, etc. 

The Functional Layer is where all high-level function-

alities of the autonomous assembly system reside. In 

the current dISAS implementation, it contains various 

components for the robotic arm path planning and con-

trol, perception functions to perform visual monitoring 

and arm servoing based on camera acquisitions, and 

the platform AOCS controller.  

Finally, the Autonomy layer contains the software 

components responsible for the specification and exe-

cution of the assembly sequence. In dISAS, Behavior 

Trees are used to compose complex sequences from 

atomic actions based on the capabilities of the robotic 

system. 

The layers of the system are integrated in 

TASTE/ESROCOS [4] [5], a novel software frame-

work developed by a related EU-funded project, and 

targeted towards space robotics.  

4 HARDWARE SIMULATION LAYER 

4.1 Simulation Engine 

The open-source Webots [6] simulation environment 

is used as the core simulation engine in dISAS.  

Webots is a generic robot simulator actively developed 

since 1998 by Cyberbotics Ltd. It is used in industry, 

education, research and several EU-financed research 

projects. Since December 2018, it is released under the 

free and open-source Apache 2 license. It includes a 

large collection of robots, sensors and actuators fre-

quently used in robotics. It uses a custom physics en-

gine based on Open Dynamics Engine (ODE), and a 

custom realistic rendering engine based on OpenGL 

(WREN). These characteristics made Webots the ideal 

candidate for the level of fidelity sought for dISAS. 

The geometry, visual representation, and physical 

characteristics of the spacecraft components are spec-

ified in configuration files using the Virtual Reality 

Modeling Language (VRML). The modelled behavior 

Figure 2: dISAS architecture overview 

Figure 1: Snapshots of dISAS. Ongoing first preassembly 

(top). Robotic arm is moving final subassembly to the pri-

mary mirror (bottom). 
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of components such as sensors and actuators is created 

by the user in separate executables called controllers. 

These controllers can be implemented in a variety of 

supported languages such as C, C++ or Python, and 

are also used to expose interfaces to other software el-

ements and libraries, through API calls, or middle-

wares such as ROS and ESROCOS.  

This is how dISAS models the spacecraft structural el-

ements, such as the bus, payload module, sunshield 

beams, and solar panels. The currently-used spacecraft 

properties are based on data from the JWST mission, 

extrapolated to fit the PULSAR mission scenario.  

4.2 Robotic Assembly System 

The design process of the dISAS Robotic Assembly 

System (RAS) is challenging for numerous reasons, 

especially because of the need for high dexterity. RAS 

dexterity is a key element as the arm has to achieve 

complex operations such as: 

- reaching the tiles in the container located at the 

very limit of the robot workspace, 

- manipulating multiples tiles, 

- building the preassemblies. 

The current dISAS robotic arm follows a modular de-

sign, based on inputs from another PULSAR demon-

strator. Its specific L-shaped articulation at the center 

of the arm allows minimizing the arm when stowed, 

while maintaining the necessary reachability capabil-

ity of the arm when fully extended, as shown in Figure 

3. 

The kinematic model of the Robotic Assembly System 

includes a rail and a robotic arm. The importance of 

the rail is crucial in the reachability ability of the Ro-

botic Assembly System, enabling it to operate the tiles 

at the bottom layer of the SMT container, and to per-

form the necessary movements for reaching the large 

primary mirror in the upper part of the spacecraft. 

Having the arm and the rail in the same kinematic 

model also allows the motion planning block and the 

control block of the RAS to simultaneously command 

both entities to perform the desired task.  

The rail is modelled by a prismatic joint, while the ro-

botic arm is modelled by 7 revolute joints. dISAS al-

lowed to observe that a supplementary degree of free-

dom improves the manipulability of the arm, typically 

to reach the tiles stored at the front of the spacecraft. 

The redundancy in the kinematic model of the Robotic 

Assembly System improves the dexterity of the RAS, 

but at the expense of the complexity and the computa-

tion time required to find a motion planning solution. 

Low-level simulated hardware control of the manipu-

lator is achieved through a dedicated Webots control-

ler. It exposes a motion command interface from the 

RAS control block in the Functional Layer using joint 

trajectory data structures. Robot states are published 

back in real time as joint states. When a trajectory is 

received, a trajectory interpolation method is used in 

order to send an admissible robot command at each 

simulated time step. The final robot command is exe-

cuted using Webots API calls. 

During the remaining months of the PULSAR project, 

it is foreseen to perform an optimization of the manip-

ulator to reduce its size, and bring its design more in 

line with robotic arms designed for space operations, 

such as the Compliant Assistance and Exploration 

SpAce Robot (CAESAR) [7].  

4.3 Segmented Mirror Tiles and Standard Inter-

connects 

SMTs are made of a hexagonal base structure with 13 

fiducial markers (AprilTag [8]) and 6 Standard Inter-

faces. Each tile has a unique set of tags for visual de-

tection (see Section 5.2). Its standard interfaces can be 

individually locked/unlocked through requests to the 

spacecraft controller by the Function Layer.  

The SI lock mechanism is modelled with a Webots 

connector node, designed to simulate various types of 

docking hardware (e.g. mechanical links held in place 

by a latch, magnetic links, pneumatic systems, etc.). 

The connection supports several kinds of constraints 

such max tensile strength, max shear strength, distance 

and rotation tolerance.  

The visual and bounding object of the Standard Inter-

face is based on the HOTDOCK connector, an inter-

face developed by a partner within the frame of PUL-

SAR.  

Figure 3: Visualization of RAS and SMT container is dISAS 
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Each tile exposes a control interface through an emit-

ter/receiver pattern, modelling a dynamic communica-

tion bus linking all SMTs and the spacecraft.  

4.5 Flexible Appendages Modelling 

Large structures, such as the solar panels, the sun-

shield and the primary mirror, are more subject to me-

chanical vibrations due to the low structural damping 

in the materials and the absence of other forms of 

damping in the vacuum of space. 

These vibrations affect pointing performance and must 

be taken into account when designing an attitude con-

troller [9]. Thus, the validation of the satellite stability 

by dISAS requires to simulate the flexible dynamics 

of these appendages in the bandwidth we wish to con-

trol. 

Webots relies on an extended version of the ODE 

physics engine which was improved by the Webots 

maintainers. In particular, Webots includes functions 

allowing the application of external torques and forces 

in the numerical integration scheme to a specific body 

of the simulation. This functionality is used to apply 

the reactions wrench of the flexible appendages to the 

spacecraft. As the rigid parts of these wrenches are al-

ready evaluated by the general integration scheme, 

only the flexible parts of the considered appendices re-

action wrenches are applied. 

To evaluate these flexible wrenches, a modal descrip-

tion of flexibility are used [10]. For this purpose, spe-

cific controllers are associated to each flexible append-

age. These controllers use the accelerometer functions 

already provided by Webots to measure the current ac-

celeration tensor of the fixation point of the flexible 

appendage. These controllers instantiate FlexAppend-

age objects which integrate modal states and evaluate 

reaction wrench at each step (Figure 4). 

A simple-use case of a spacecraft with two flexible so-

lar panels is illustrated in appendix (Figure 8). 

5 FUNCTIONAL LAYER 

The Functional Layer (FL) includes all the algorithms 

for control, perception and planning as core compo-

nents that can be easily reused and customized. Each 

component is implemented as a standalone C++ soft-

ware library, which is then integrated in the FL as 

TASTE functions. The TASTE framework takes care 

of generating middleware data exchange code from a 

user-created interface mode, and data exchanges use 

standardized ASN.1 data types. The framework also 

supports generation of bridges to other middleware, 

such as ROS, for easy prototyping with existing soft-

ware.  

5.1 Spacecraft Attitude Controller 

During the assembly process, the main issue consists 

in preserving a reasonable pointing accuracy of the 

satellite to maintain the link with the ground station, 

despite the slow evolution of the inertia and frequency 

modes of the system and the torque disturbances that 

are generated by the motion of the robotic arm. 

To address this point, a modular attitude controller 

structure described in Figure 5 is used. 

To size this controller, a set of Linear Time Invariant 

models which cover all the deployment steps are gen-

erated by dISAS. Then, a multi-model approach is 

used to analyze the inertia variations and choose the 

best controller setting via the Robust Control System 

toolbox of Matlab. In a second time, the robustness of 

the controller to the flexibility and RAS perturbations 

are assessed via the SMAC toolbox [11], and the con-

troller is discretized. Finally a C++ library of this con-

troller is generated by using autocoding tools [12]. 

5.2 Perception Functions 

Perception functions, process images captured on the 

demonstrator cameras in order to increase the auton-

omy level and safety of the assembly process.  

Figure 4: Block diagram of the flexible perturbation 

computation 

Figure 5: Attitude controller structure 
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Two cameras are mounted on the simulated spacecraft: 

one on the end-effector (EE) and one on the spacecraft 

structure. Using the captured images, three primary 

perception functions are deployed: Tile Localization, 

Assembly Monitoring, and Visual Servoing.  

Using the AprilTag fiducial markers mounted on the 

sides and back of the SMT, Tile Localization will de-

tect the tiles, based on their unique IDs, in images cap-

tured by the External or EE-mounted cameras. Tag 

corners coordinates are then extracted, and the pose 

with respect to the camera frame is computed using 

Perspective-n-Point methods. The pose of the tile is fi-

nally computed using the 2D/3D correspondences, be-

tween 2D coordinates extracted from AprilTag detec-

tion and 3D coordinates of the tile model. 

This localization is used to enable a safe, step-by-step 

approach to grasp the tiles with the manipulator end-

effector, instead of relying only on open-loop localiza-

tion based on manipulator forward kinematics. 

Further emphasizing safety, the Assembly Monitoring 

function enables automatic detection of invalid condi-

tions during the assembly. By comparing the currently 

localized tiles in the observed scene with an internally 

held ground truth model of each assembly step, it 

raises an error whenever an out-of-bounds tile of sub-

assembly pose is detected. The error can then be han-

dled by the autonomy component to perform a user-

defined recovery or wait for operator intervention 

Finally, Visual Servoing [13] is used to control the 

motion of the manipulator using vision feedback. It is 

suitable for precise robot movement, in our case to per-

form SMT picking and to precisely position SMTs for 

the primary mirror assembly. To this end, the goal of 

the control law is to regulate at zero the considered 

task function.  For position-based visual servoing, this 

is commonly the current end-effector pose with re-

spect to a desired end-effector pose. For image-based 

visual servoing, this can be the current positions of im-

age features with respect to their desired image coor-

dinates. 

Two configurations are considered: eye-in-hand, 

where the camera is embedded at the robot end-effec-

tor, and eye-to-hand, where the camera is static with 

respect to the robot base and looking at the robot end-

effector. PULSAR exploits both configurations in its 

scenarios. The first one is the procedure to perform 

mating between the end-effector SI and any SMT SI, 

for tile grasping. In this configuration, an eye-in-hand 

configuration is suitable, since a camera at the end-ef-

fector can localize the tags near the SMT SI, as shown 

in Figure 6. In contrary, when the tile is attached to the 

robot end-effector, the EE camera viewpoint is almost 

completely occluded. Switching to an eye-to-hand 

configuration is then preferable. The external camera 

is positioned in order to simultaneously localize the 

SMT attached to the robot end-effector and the SMT 

targeted for mating, to achieve a desired relative pose 

between them. 

5.3 Robotic Assembly System Control 

This component is responsible for commanding the 

Robotic Assembly System. It processes user command 

requests (Cartesian pose, joint position, etc.) in order 

to plan a collision-free trajectory in the task space. 

Then, the necessary joint trajectory commands are 

computed and sent to the Webots controller of the 

RAS. 

The current implementation is based upon the open-

source ROS and MoveIt ecosystem [14]. The MoveIt 

framework is exploited for motion planning and colli-

sion checking capabilities. MoveIt is currently used 

for testing and development until a custom motion 

planning library developed in the frame of PULSAR 

is available. Standardized interfaces will allow users 

to change the underlying motion planning library with 

their own, with minimal changes. 

As inputs, the RAS kinematic model is described using 

the widely-used URDF specification. Joint types, joint 

limits, dynamic properties are detailed in this file. Se-

mantic description of the robot (e.g. which link is the 

Figure 6: Eye-in-hand visual servoing in dISAS. EE cam-

era point of view with AprilTag detection and desired vis-

ual features pose in top-right. 
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robot end-effector) uses the SRDF specification. 3D 

mesh data is also provided for collision checking dur-

ing the path planning process, and is extracted from 

the Webots scene model beforehand. 

Communication between the RAS control block and 

the simulated hardware layer is achieved with ROS ac-

tions and topics, using a TASTE/ROS bridge. The 

RAS control component exposes the following inter-

faces: 

- end-effector pose goal request, that is the desired 

pose of the RAS end-effector with respect to the 

robot base frame, 

- service to update the state of the RAS, for instance 

to attach/detach a tile to/from the robot end-effec-

tor. This is necessary in order to correctly plan a 

trajectory when one or multiple SMT are attached 

to the RAS end-effector, 

- service to update the planning scene, for instance 

to initialize the position of the various collision 

objects in the scene at start-up,  

- online robot state input from hardware simulation 

layer to perform closed-loop control. 

6 AUTONOMY LAYER 

6.1 Assembly Sequencing 

The type of autonomy required for the PULSAR sce-

narios can be considered as sequential rather than re-

active. The system follows a completely predefined 

assembly plan. Therefore, a sequencing functionality 

is used to schedule the assembly steps, keep track of 

the various states of the system, ensure safety of oper-

ations by validating input/output conditions, and im-

plement failure recovery. 

We use behavior tree formalism to describe the differ-

ent steps of the mission scenario. Behavior trees are 

very similar to hierarchical state machines with the 

key difference that the main building block is a task 

(e.g. “do a pre-assembly”) rather than a state. Formally 

speaking, a behavior tree is a single root directed tree 

where internal nodes are called “control flow nodes” 

and leaf nodes are called “task execution nodes”.  

In dISAS, behavior trees are implemented using the 

open-source BehaviorTree.CPP library [15]. The se-

quencer library embeds a list of atomic actions which 

are bound with functions exposed by the functional 

layer components, and can be reused for the various 

steps of the assembly. This allows the creation of high-

abstraction autonomous tasks. Trees are described as 

an XML file which can include other trees, enabling 

complex task composition. Figure 7 illustrates an ex-

ample of such dISAS behavior tree structure.  

4 CONCLUSION 

This paper provided an overview of the current imple-

mentation of the demonstrator of In-Space Assembly 

in Simulation of the PULSAR project. 

dISAS has already proven useful in providing a simu-

lation environment to support prototyping and devel-

opments in PULSAR. Next steps include finalizing the 

integration and executing a complete, fully-integrated 

demonstration mission.  

Appendix 

We present, on the top left, the angular velocity and, 

on the top right, the linear velocity of the main body 

when external torques are applied around the different 

axes. These external torques are represented in the 

Figure 8: Simple-use case of a spacecraft with two flexible 

solar panels 

Figure 7: Example behavior tree structure of assembly se-

quence 
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middle left plot. On the bottom plots, we can also ob-

serve the reaction torques and forces of the solar panel. 
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