
 RL STaR Platform: Reinforcement Learning for Simulation based Training of Robots
Virtual Conference 19–23 October 2020

Tamir Blum1, Gabin Paillet1, Mickael Laine1, Kazuya Yoshida1
1Department of Aerospace Engineering, Tohoku University, Aoba 6-6-01, Aramaki, Aoba-ku, Sendai, Miyagi

980-8579, Japan

Emails: tamir@dc.tohoku.ac.jp, paillet.gabin.p5@dc.tohoku.ac.jp, mickael@astro.mech.tohoku.ac.jp
yoshida@astro.mech.tohoku.ac.jp

ABSTRACT

Reinforcement learning (RL) is a promising field to
enhance robotic autonomy and decision making
capabilities for space robotics, something which is
challenging with traditional techniques due to
stochasticity and uncertainty within the environment.
RL can be used to enable lunar cave exploration with
infrequent human feedback, faster and safer lunar
surface locomotion or the coordination and
collaboration of multi-robot systems. However, there
are many hurdles making research challenging for
space robotic applications using RL and machine
learning, particularly due to insufficient resources for
traditional robotics simulators like CoppeliaSim. Our
solution to this is an open source modular platform
called Reinforcement Learning for Simulation based
Training of Robots, or RL STaR, that helps to
simplify and accelerate the application of RL to the
space robotics research field. This paper introduces
the RL STaR platform, and how researchers can use
it through a demonstration.

1 INTRODUCTION

Reinforcement learning (RL) is a branch of machine
learning, employs an iterative process of trial and
error through direct interaction with the
environment. It holds great promise to increase
robotic autonomy for difficult real world tasks in both
structured, and particularly unstructured
environments. Unstructured environments have been
an area of interest for researchers due to insufficient
modeling and costly computational requirements
which can hinder traditional approaches. Machine
learning has seen an increase in popularity within
recent years, with certain applications garnering
significantly more attention, such as computer vision.
RL by comparison has received less attention but has
still made great progress, as shown by the number of
publications for each subfield.

A quick search on arXiv, a popular free paper
database for preprints commonly used in the machine
learning field, shows this disparity[1]. By searching
“Computer Vision” and “Reinforcement Learning”
keywords, one can find 48,385 results for computer
vision as opposed to only 7,697 results for
reinforcement learning throughout the entire
database. If narrowed down to just the past year, it
shows 17,599 cases and 3,675 cases respectively.
This could signify an increasing interest emerging in
the RL branch of machine learning.

Figure 1: High level description of the RL STaR
platform showing the different blocks of the platform

(denoted by the dotted boxes) and the transfer of
information between them.

Within reinforcement learning, there are several
well-known applications on video games,
outperforming human ability in both old and new
games alike, including Go and Dota 2[2],[3]. While
Go has a relatively simple action space, you put down
one piece in an open area during your turn, it has a
large number of possibilities, games lasting a couple
hundred turns, creates over 10e170 possible state
values for the board positions[4]. On the contrary,
Dota 2 is focused on high-speed realtime teamwork

5032.pdfi-SAIRAS2020-Papers (2020)

mailto:tamir@dc.tohoku.ac.jp
mailto:paillet.gabin.p5@dc.tohoku.ac.jp

in a 5v5 setting. Between the two, RL has been
shown to excel in adversarial games that are both
discrete, i.e. turn based, and continuous, as well as in
both individual and team based settings. However,
RL applications outside video games are also
numerous and robotics research is seeing rising
interest recently, with applications for both high level
functions such as decision making[5] and low level
functions such as controlling a robotic hand[6].

There are two main ways to train RL for robotics.
The first is to train directly on the robot. In this case,
the learning algorithm is run directly on the robot, so
the robot interacts with the environment physically.
Any data gathered by its sensors or periphery sensors
can be collected, aggregated together, and used by the
robot to update its agent. An agent is a term used to
describe a RL based decision making system. This
approach has the benefit of training in a more
realistic environment that can perhaps even be the
actual environment you want the robot to function in.
However, training using the onboard CPU of a robot
can present issues due to lower available computation
power as compared to a workstation or a cloud
computing service. Additionally, this can also be
dangerous for the hardware, i.e. a bipedal robot
learning to walk and falling over can break. Thus, a
second approach of training using a simulated
environment, and then transfering the results to the
actual robot has increased in popularity. This transfer
is termed simulation to reality transfer, or sim2real
for short. This method has the reverse benefits and
disadvantages compared to training on an actual
robot, namely being safer for the robot, faster for
training, and giving us the ability to train in
environments we might not have access to, while on
the other hand suffering from inaccuracies and
limitations of the simulation.

There are a number of platforms and simulators that
have been used for 3D robot applications. That said,
many of the simulators for these efforts are different
from the ones traditionally used in the robotics
community, such as CoppeliaSim and Gazebo. This
makes it harder for robotics researchers to
incorporate RL into their work, while also potentially
increasing the gap between the real world and the
simulation, termed the sim2real gap[7],[8]. This gap
determines if a RL trained robot, which works in
simulation, will also work in the real world, and how
similar the actions between the two will be.

We created the Reinforcement Learning for
Simulation Based Training of Robots Platform, or RL
STaR for short in order to make RL more accessible
for robotics researchers using CoppeliaSim. This
platform combines the three main components

needed for reinforcement learning in robotic
applications: the RL algorithm, the simulator and a
modular component that connects the two
aforementioned parts with the task to be learned.

2 BACKGROUND

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine
learning that differs from the others in that the agent
generates its own training data. It does this by
interacting with the environment, whether it is in the
real world or in a simulation. RL teaches an agent
how to solve a certain problem via optimizing via a
reward function. The reward function is traditionally
set before the training problem, and gives a reward to
the agent based off of its transitions between states.
States are the collection of data relevant for the agent
to make an action and to describe its current
condition. This state information, when given to the
agent, is called an observation. This information can
be either perfect, termed fully observable, or
imperfect, i.e. noisy or only partially available, and
thus termed partially observable.

The goal of the agent is usually to maximize the
reward function, but depending on the algorithm,
several other features or objectives can be
incorporated as well, such as increasing entropy, or
the spread of the probability over multiple actions for
a given state. Such Features are popular in many
modern algorithms, whether it be entropy or
Kullback-Leibler (KL) divergence, also known as
relative entropy[9]. These features often are meant to
spur additional exploration in order to overcome local
maximum in a search for either a higher local
maximum or a global maximum. There have been
some studies showing their possible effectiveness,
often empirically[10].

2.2 Reinforcement Learning in Simulators

Simulators help us model the real world and physical
interactions. This is important for robotics, as it
allows us to test control applications and different
robot configurations, such as their kinematics. It
allows for faster prototyping and helps us create
algorithms in a safer and efficient manner. There are
several important components of simulators, the first
is how it propagates everything forward in time. This
is typically done by a physics engine, which
estimates the force interactions and states of all the
objects. Naturally, an ability to create the objects and
the environment or world that you desire is also
critical. Lastly, a GUI and visualization is also
beneficial to observe how the system interacts and
evaluate the effectiveness of what you are trying to

5032.pdfi-SAIRAS2020-Papers (2020)

achieve. Thus, you can create objects within the
environment, such as a floor or a wall, along with a
robot, such as a lunar rover, and test the interaction
between the two.

Several efforts have gone into streamlining how RL
environments are made, such as Gym, which was
created by OpenAI in order to standardize the way
RL problems are set up, making it easier to share
code and compare results amongst researchers[11].
Every Gym environment has the same skeleton of
basic functions and formatting, which includes a
declaration of the dimensionality and scale of the
actions and observations, amongst other things. It
includes some structure which dictates how to reset
and set up the problem.

2.3 Robots in Unstructured Environments

Certain applications are characterized by unstructured
and unknown environments, such as space robotics,
field robotics and disaster relief robotics. These areas
have several factors that make them unstructured
which can include: a limited degree of apriori known
ground conditions, uncertain deployment/travel
destination, uncertain task definition, and stochastic
conditions, such as variable friction that might be
hard to model. These cases often enable us to define
the problem as a Markov Decision Process (MDP).
MDPs are problems with some inherent uncertain or
probabilistic transition between one state to the next,
either in the form of multiple state possibilities given
a certain action or multiple reward possibilities given
a certain action. These must meet the markov
property, which states that the transition probability
at time t is independent of all the previous timesteps.
In modern times, RL has been used to try to optimize
solutions for many of these problems.

3 PRIOR AND RELATED WORKS

There have been many simulators developed for RL
applications, and it is worth briefly discussing them.

Multi-Joint dynamics with Contact, or MuJuCo, is a
physics engine that has been popularly used for
reinforcement learning applications[12]. While
popular, it has received criticism in the community
for not being free, and as such, alternatives like
Roboschool have popped up. MuJuCo claims to be
faster and more accurate for certain types of
interactions as compared to other engines such as
Bullet, which could be a benefit of this physics
engine and simulator[13]. It comes with several
robot-like models, such as “humanoid”, a 2-legged
human like model, and “ant”, a 4-legged model, that
can be used for various RL tasks, such as teaching the
model how to walk. MuJuCo’s graphic user interface

(GUI) is relatively easy to use and is traditional for
the robotics community with xml format.

OpenAI’s Roboschool was launched as a free
alternative to MuJoCo[14]. This platform contained a
default flat rectangular world with football field
graphics placed on top. It includes several robot-like
bodies similar in appearance to MuJoCo’s, such as
humanoid and ant, although with different
characteristics such as weight. It couples the GUI
with the Bullet physics engine, which is generally
considered fast but not the most accurate, and custom
code is available to train the agents to walk forward.
Other tasks include chasing goals and walking under
force disturbances (being pelted by cubes). This was
recently discontinued, citing the success of PyBullet,
a free alternative, as a reason[15]. While Roboschool
contained a great GUI, it was not easy to change the
environment, such as a lack of interactive interface
for adding objects, which limited its applicability for
the robotics community. PyBullet is also well built
and uses the Bullet engine. It has a GUI that is
relatively easy to use and familiar for the robotics
community, however, has not traditionally been used.
It uses OpenGL for rendering and can load URDF
and SDF files, two file formats for modeling objects
by code.

CoppeliaSim and Gazebo are two simulators
commonly used in the robotics community[16].
Within CoppeliaSim, there are a number of options
for physics simulators, including Bullet. One of the
reasons that many machine learning researchers
tended to overlook the more traditional simulators
was because many machine learning researchers
came from outside the robotics community. Another
reason was due to overall speed. Recently, the speed
concern was addressed in PyRep, which is a toolkit
aimed at, among other things, increasing
CoppeliaSim’s speed for learning tasks[17]. This
should make the platform more attractive for both
robotics focused researchers and other machine
learning researchers alike.

Pyrep is a recently released toolkit aimed at making
CoppeliaSim more appealing for the typical machine
learning researcher through speed improvements,
with a new rendering engine and API
improvements[17]. This recent upgrade illustrates the
growing interest and understanding within the
robotics community, as well as the robotics
simulator’s makers’ acknowledgement about the gap
that currently exists between machine learning and
robotics.

Baselines is a library of RL algorithms created by
OpenAI. It includes a number of modern algorithms,

5032.pdfi-SAIRAS2020-Papers (2020)

such as Actor Critic using Kronecker-Factored Trust
Region (ACKTR) and Proximal Policy Optimization
(PPO)[9], [14].

Some work has also been done on the Gazebo
simulator front in order to encourage greater usage.
The openai_ros package makes use of the OpenAI
platform to train ROS based robots on the Gazebo
simulator[18]. It does so by providing users with a
Gazebo Environment class that enables all necessary
connections between Gazebo and OpenAI Baselines
for training, with the help of the ROS communication
architecture. This added layer is universal for any
project and shares training information through ROS
topics. Two other modules, the Task Environment
and the Robot Environment classes, are also part of
this package and can help to build a robot training
project from scratch.

Many researchers have shown an interest in RL and
machine learning for robotics, as well as for space
robotics. This includes a great number of robot types,
such as walking robots, tensegrities, and
rovers[19]–[22]. Applications have included learning
to walk on variably sloped terrains, learning
locomotion in rough terrains and using computer
vision and machine learning for enhancing autonomy
on planetary rovers. While path planning is a frequent
subject in RL, it is often done by using set navigation
modes instead of a motion control trained specifically
with this goal in mind[23]. Nonetheless, motion
control is a hot topic on its own for AI developers,
with recent research on the attitude motion control of
humanoid robots and solving strong coupling
nonlinear problems[24],[25].

4 RL STaR PLATFORM

4.1 Platform Structure

The platform was created in a modular way such that
it will easily evolve over time, be simpler to
understand and open to collaborative work. This can
be seen in how we broke down the structure into 3
mains blocks, one for the RL algorithms, one for the
simulator, and one for the actual application, called
the Task Trainer Block. This can also be seen with
how we broke down the Task Trainer Block into
subblocks.

The three main blocks of the platform (Fig. 1):

1) RL Library Block: this block is responsible for
initiating the start of the simulation through a call to
the run file, and specifies the algorithm to be used,
along with the neural network (NN) architecture,
some optimization parameters, and the number of
training steps desired. This block contains a number

of RL algorithms to select from when training.
OpenAI’s Baselines was chosen to ship with this
platform[26]. This was due to its popular usage in the
RL community, due to its professional appearance
and the availability of a decent number of modern
choices for RL algorithms. This library should be
easily swappable with any other RL library that is
compatible with the Gym environments though, such
as Stable Baselines or Tensorflow RL Agents[27],
[28].

2) Simulator Block: CoppeliaSim was used as the
simulator due to its popularity within the robotics
community, its relative ease of use and good graphics
user interface. We wanted to ensure that the simulator
would not limit the user in terms of setting up an
interesting and practical environment to train the
robot. Commands are received from the task trainer
block to specify the next action of the robot and to
step the simulation forward. The simulator block also
passes back the state observation, information about
the simulation and the robot state, to the task trainer
block. Advanced features include detecting
collisions, and adding various sensors such as
cameras and lidar.

3) Task Trainer Block: an intermediary modular
block that connects everything, defines the task,
environment, and robot. This block is broken down
into several sub blocks consisting of: IN/OUT,
Simulator (API commands), Tasks, Main, and
Constants (not shown in the diagram as it is only
internal). This block is probably the one that
researchers would spend most of their time
customizing. It is also responsible for setting up some
of the conditions of the simulator, such as specifying
which file to load for the robot and world, and the
action dimensions and observations to bring back
from the simulator. The simulator sub block is
responsible for communicating back and forth
between this block and the simulator block using the
python API.

The RL library block updates the neural networks
(NNs) after processing each block of n timesteps,
updating the weight and bias parameters. The
simulation block propagates the simulation forward
by timesteps. The task trainer block determines the
reward based on the chosen task and the state values
for a given timestep. Several of the task trainer sub
blocks responsible for passing data are shown. Each
sunblock (blue box) is contained within a separate
file.

5032.pdfi-SAIRAS2020-Papers (2020)

4.2 Task Trainer Block Modular Configuration

We broke the task trainer block into the multiple sub
blocks, with each sub block contained in a file and
having a unique function. This makes it faster to
become familiar with this platform and to use it for
machine learning robotics research. By separating the
files, it also makes it simpler to find the section of
code you are trying to change and minimizes the
chances of breaking the code accidentally. Critically,
this platform is generalizable and scalable, in order to
be used by different researchers, for a variety of
tasks, along with making it straightforward to
upgrade the system in the future and for researchers
to share their work.

4.3 Simulator, Setup, Robot Link

The CLOVER rover is a small four wheeled skid
steering robot built by the Space Robotics Lab for
multi-rover collaborative exploration research. We
modeled it as an object in the simulator by
simplifying the overall geometry into a number of
simple shapes. This is done in order to save
computation cost trying to keep the overall system
dynamics the same. Several motors were then added
as actuators and are attached to the wheels. The
naming of each part is important, as this name is used
as a unique identifier for communications between
the Simulator Block (CopelliaSim) and the Task
Trainer Block.

5 TRAINING TASK EXAMPLE

The main goal of this platform is to help researchers
mix robotics, space, and machine learning/RL. This is
primarily done by the tasks that the robots are trained
to solve. These tasks can be broken down into sub
modules and called upon during the training process
based on which task you would like the robot to
solve. This allows the researcher to change as few
things as possible when defining the problem, and to
share their tasks with other researchers. We will share
an example of using the platform to train the
CLOVER rover for a task.

5.1 Path Planning and Motion Control (PPMC)

The RL STaR platform is shipping with one task,
dubbed the path planning and motion control task
(PPMC) based on some prior work on a walking
robot moving on flat terrain and a rover generalizing
to hilly terrain[29], [30]. This task teaches the robot
how to control its motors in order to move and turn to
get to the user specified waypoints. It is learned in a
model free manner, meaning that there is no learned
or apriori produced assumption of how the system
behaves. Rather, everything is learned through trial

and error, accumulating experience and adjusting the
actions accordingly. In other words, the agent learns
how to operate the motors in order to maximize the
reward, given for making progress towards the goal.
Learning takes place when the reward function is
suitable for the task it is we would like it to learn. In
this example, we rewarded the agent for making
progress to the current goal, and randomizing the
location of the waypoint for each episode, ensuring
that it does not just memorize one specific destination
it needs to go to.

Figure 2: A sequence of images showing a trained
rover progressing through a first waypoint and

proceeding to a second waypoint.

5.2 Map and Rover Characterization

As a demonstration, we train the model CLOVER
rover for the PPMC task on a flat terrain in a 10m x
10m grid. The rover is two wheel drive, with the front
motor on each of the two sides controlling the speed
of both the front and rear wheel. The agent action
range is from [0,1]. This corresponds to a minimum
velocity of 0 m/s and a maximum velocity of 0.1 m/s
(when both motors were driven with an action of 1).
An action multiplier was used to scale this output to
either increase or decrease the maximum speed of the
rover. We trained the agent with an action multiplier
of 2, corresponding to a maximum velocity of 0.2
m/s. The actual motor-restricted maximum speed of
the rover is 0.4 m/s, however, in practice for lunar
applications, the rover is not expected to ever reach
such high speeds. Note that we set the minimum
speed to 0 m/s as there was no need for the rover to
reverse during this task.

5032.pdfi-SAIRAS2020-Papers (2020)

Contrasting some prior work, for this demonstration,
we aimed to minimize the number of states we collect
to use for the observations in the training of the RL
agent[29], [30]. This information is placed into an
array and fed to the two neural networks. Actor-critic
type RL algorithms, such as PPO and ACKTR, have
two neural networks, one that determines the next
action given the current state, and a second one that
determines how optimal certain states are given the
predicted future rewards. This state array consists of:
the x and y coordinate of the rover (relative to the
origin), the velocity of the rover in the x and y
direction relative to its base (forward and to the side),
the angular yaw, as well as some information related
to the current waypoint. This waypoint information
held information about the angle between the rover
and the waypoint, the distance to the waypoint, and
the waypoint x and y coordinate. Thus in total there
are 9 states, 5 states relative to the rover, and 4
relative to the current waypoint. All the states were
normalized to a range [-1,1] between their expected
[min, max] values.

5.3 Tuning Process

The tuning process is an important step in the modern
reinforcement learning and machine learning
methodology. Three important things needed to be
tuned for this example: the RL algorithm, the neural
network and the reward function.

Table 1: Parameters and their values used for tuning
the PPO algorithm for the demonstration

Parameter Value Parameter Value

learning rate 3e-4 number of steps per
update

256

discounting
factor

0.9 advantage estimation
discounting factor

0.95

entropy
coefficient

0.01 value function
coefficient

0.5

number of
training epochs
per update

4 number of
minibatches per
update

4

clipping range 0.2 max grad norm 0.5

For this demonstration, PPO from Baselines was
used, however, it was also tested with ACKTR with
different parameters. The Baselines RL Libraries
code is well documented with the tunable parameters
for each algorithm, giving acronyms and the meaning
of each variable[26]. In Tab. 1 we display the values
we used for the training of the agent with PPO.

The neural network architecture consisted of a fully
connected diamond shaped neural network, with 5
layers sized: 64x128x164x128x64, tanh activation
function, and without layer normalization.

5.4 Reward Function

The reward function, R(G,t), is calculated at each
timestep with respect to the goal and has 3 main
components: the primary reward, P, meant to directly
encourage the task to be learned; beneficial rewards,
B, meant to encourage good habits; and detrimental
penalties, D, meant to discourage bad habits[30]. In
the case of this demonstration, the primary reward is
a function proportional to the progress made towards
the current waypoint, either positive if the agent
moved closer, or negative if the agent moved further.
There are no beneficial rewards in this case. There
are two detrimental penalties, one constant value
given at each timestep to discourage slow movement
and a second as a function proportional to the yaw
rate (where θ is yaw), to discourage superfluous
rotations. The episode ends when either two
waypoints have been reached or the time limit has
passed. If a goal is reached, we give a bonus reward
to the rover by assuming that it made progress of 0.5
m in the last timestep, substituting X for 0.5 in Eq. 1.

Figure 3: Reward curve obtained for the
demonstration. Each point represents the average of
5 batches, each with 256 timesteps. The X axis
represents real-time elapsed since training began.

5032.pdfi-SAIRAS2020-Papers (2020)

(G,) X (1)R t = P + B − D = Cveloc − Calive − C turn dt
dθ

Where constants Cveloc , Calive and Cturn are equal to 50,
0.5 and 1, respectively.

As shown in the reward curve in Fig. 3, there are
three or so distinct phases of the learning process.
The first is the primary learning, where the agent
learns to accomplish the main goal of the task, and is
discernible by a steep gradient in the reward curve.
The second phase is the optimization phase, where
the agent already achieves the primary objective, but
can still optimize to maximize the beneficial reward
and minimize the detrimental penalties. This is
discernible by a shallow but still significant slope in
the reward curve. The last phase is when the agent
has plateaued.

6 CONCLUSION

This paper introduces a platform for applying RL to
robotics and space robotics in a manner accessible to
many more traditional researchers. This is done
through a combination of the CoppeliaSim, the
Baselines RL libraries and a task training block. The
objective is to make it simpler for robotics
researchers who might not otherwise apply RL to
their problems to do spo, and to then share their work
with other such researchers. This platform was made
in a modular way to allow for sharing and
collaboration, to be straightforward to use and simple
to build upon.

One additional modular block that would be of high
interest to robotics researchers is a ROS block. This
could be in place of the IN/OUT block, and allow
ROS messages to control the robot, as opposed to
direct messages from the RL algorithm, which might
be a desirable step before conducting sim2real
transfer. As RL STaR was released with just one
robot and one task, the addition of various robots and
tasks as more people use the platform could help
encourage creativity and innovation in the robotics
RL community. This will include high-level decision
making tasks, such as searching for resources and
exploring an area. More robots can be added and
shared with each other, such as high speed rovers for
lunar explorations[31]. Additionally, more
complicated environments can be added for and by
the community, such as hilly or obstacle rich
environments. Such environments will also require
the addition of sensors such as LIDAR or cameras.
This can stimulate new solutions to synergistically
combine computer vision and RL for robotics. Lastly,
this implementation of RL star uses the original
CoppeliaSim renderer, and so perhaps by upgrading
to the Pyrep version, faster simulation can be

enabled, which could be advantageous for some
applications.

References

[1] arXiv.org e-Print archive, (n.d). URL
https://arxiv.org/

[2] Silver, D., et al., (2017). Mastering Chess and
Shogi by Self-Play with a General Reinforcement
Learning Algorithm. ArXiv171201815 Cs.

[3]　OpenAI, et al., (2019). Dota 2 with Large Scale
Deep Reinforcement Learning. ArXiv191206680 Cs
Stat.

[4]　Tromp, J., Farnebäck, G., (2007).
Combinatorics of Go. van den Herik, H.J.,
Ciancarini, P., Donkers, H.H.L.M. (Jeroen) (Eds.),
Computers and Games, Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, pp. 84–99.

[5]　Everett, M., Chen, Y.F., How, J.P., (2018).
Motion Planning Among Dynamic, Decision-Making
Agents with Deep Reinforcement Learning.
ArXiv180501956 Cs.

[6]　OpenAI, et al., (2019). Learning Dexterous
In-Hand Manipulation. ArXiv180800177 Cs Stat.

[7]　Rohmer, E., Singh, S.P.N., Freese, M., (2013).
V-REP: A versatile and scalable robot simulation
framework. IEEE/RSJ International Conference on
Intelligent Robots and Systems, (IROS 2013), IEEE,
Tokyo, pp. 1321–1326.

[8]　Koenig, N., Howard, A., (2004). Design and use
paradigms for Gazebo, an open-source multi-robot
simulator. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), pp. 2149–2154 vol.3.

[9]　Wu, Y., Mansimov, E., Liao, S., Grosse, R., Ba,
J., (2017). Scalable trust-region method for deep
reinforcement learning using Kronecker-factored
approximation. ArXiv170805144 Cs.

[10] Schulman, J., Chen, X., Abbeel, P., (2018).
Equivalence Between Policy Gradients and Soft
Q-Learning. ArXiv170406440 Cs.

[11] Brockman, G., et al., 2016. OpenAI Gym.
ArXiv160601540 Cs.

[12]　Todorov, E., Erez, T., Tassa, Y., (2012).
MuJoCo: A physics engine for model-based control.
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 5026–5033.

5032.pdfi-SAIRAS2020-Papers (2020)

https://arxiv.org/

[13] Coumans, E., (2013). bulletphysics/bullet3.
Bullet Physics SDK.

[14]　Schulman, J., Wolski, F., Dhariwal, P.,
Radford, A., Klimov, O., (2017). Proximal Policy
Optimization Algorithms. ArXiv170706347 Cs.

[15]　Coumans, E., Bai, Y., (2017). Bullet
Real-Time Physics Simulation | Home of Bullet and
PyBullet: physics simulation for games, visual effects,
robotics and reinforcement learning.

[16]　Allan, M., et al, (2019). Planetary Rover
Simulation for Lunar Exploration Missions. IEEE
Aerospace Conference, pp. 1–19.

[17]　James, S., Freese, M., Davison, A.J., (2019).
PyRep: Bringing V-REP to Deep Robot Learning.
ArXiv190611176 Cs.

[18] openai_ros - ROS Wiki, (2018). URL
http://wiki.ros.org/openai_ros

[19]　Jones, W., Blum, T., Yoshida, K., (2020).
Adaptive Slope Locomotion with Deep Reinforcement
Learning. IEEE/SICE International Symposium on
System Integration (SII), pp. 546–550.

[20]　Surovik, D., Wang, K., Bekris, K.E., (2018).
Adaptive Tensegrity Locomotion on Rough Terrain
via Reinforcement Learning. ArXiv180910710 Cs.

[21]　Ono, M., et al., (2020). MAARS: Machine
learning-based Analytics for Automated Rover
Systems. IEEE Aerospace Conference, pp. 1–17.

[22]　Higa, S., et al., (2019). Vision-Based
Estimation of Driving Energy for Planetary Rovers
Using Deep Learning and Terramechanics. IEEE
Robot. Autom. Lett. 4, 3876–3883.

[23]　Sánchez-Ibánez, J.R., Pérez-del-Pulgar, C.J.,
Azkarate, M., Gerdes, L., García-Cerezo, A., (2019).
Dynamic path planning for reconfigurable rovers
using a multi-layered grid. Eng. Appl. Artif. Intell.
86, 32–42.

[24]　Shi, Q., Ying, W., Lv, L., Xie, J., (2020). Deep
reinforcement learning-based attitude motion control
for humanoid robots with stability constraints. Ind.
Robot Int. J. Robot. Res. Appl. 47, 335–347.

[25]　Engel, J.-M., Babuška, R., (2014). On-line
Reinforcement Learning for Nonlinear Motion
Control: Quadratic and Non-Quadratic Reward
Functions. IFAC Proc. Vol., 19th IFAC World
Congress 47, 7043–7048.

[26]　Dhariwal, P., et al., (2020). openai/baselines.
OpenAI.

[27]　Abadi, M., et al., (2016). TensorFlow:
Large-Scale Machine Learning on Heterogeneous
Distributed Systems. ArXiv160304467 Cs.

[28]　Hill, A., et al., (2018). Stable Baselines. URL
https://github.com/hill-a/stable-baselines

[29]　Blum, T., Jones, W., Yoshida, K., (2020).
PPMC Training Algorithm: A Deep Learning Based
Path Planner and Motion Controller. International
Conference on Artificial Intelligence in Information
and Communication (ICAIIC), pp. 193–198.

[30]　Blum, T., Yoshida, K., (2020). PPMC RL
Training Algorithm: Rough Terrain Intelligent
Robots through Reinforcement Learning.
ArXiv200302655 Cs Eess Stat.

[31]　Rodríguez-Martínez, D., Winnendael, M.V.,
Yoshida, K., (2019). High-speed mobility on
planetary surfaces: A technical review. J. Field
Robot. 36, 1436–1455.

5032.pdfi-SAIRAS2020-Papers (2020)

