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ABSTRACT

We present an approach to autonomous rover explo-
ration that enables higher science productivity. We first
describe a machine learning model for wide-area min-
eral mapping that extrapolates signatures from just a
few rover measurements. We use spectroscopic data
because it is diagnostic of mineral composition. Ex-
ploration productivity is improved by incorporating
notions from information theory and non-myopic path
planning. We recently demonstrated the success of
this approach in a field experiment in which our au-
tonomous rover Zoë mapped a well-studied region of
geological interest in Nevada. In this work, we apply
and extend our methodology to actual Mars data and
show performance in a Mars simulation study.

1 INTRODUCTION

Mars rovers have accomplished impressive science
and exploration objectives. However, it is difficult to
maintain high levels of productivity [1]. One of the
reasons is the heavy reliance on interaction between
the rovers and ground operators, requiring substantial
effort when planning and validating commands that are
sent to the robots. Furthermore, communication op-
portunities and bandwidth are limited, drawing out the
time needed to accomplish mission goals.

The aim of this work is to improve mission productiv-
ity. First, by allowing rovers to efficiently map large
areas through the extrapolation of scientific features of
interest from just a few in situ measurements. Second,
by enabling robotic explorers to take more adaptive ac-
tions based on real-time information.

In regard to efficient wide-area mapping, we use a ma-
chine learning model that allows a rover to map miner-
alogy by combining remote and in situ measurements.
Spacecraft such as the Mars Reconnaissance Orbiter
(MRO) and Mars Express collect remote data that has
been crucial in the large-scale understanding of Mars,
but often suffer from low resolution. Mars rovers such
as Opportunity and Curiosity collect high-quality in
situ data, but only at a few locations. Consequently,
the objective of our model is to extrapolate rover mea-
surements from in situ data in order to produce rich

Figure 1: The autonomous rover Zoë performing a
geological survey at Cuprite, Nevada. The robot col-
lects samples (white path) with an onboard spectrome-
ter and extrapolates spectral signatures to unsampled
locations to then generate a mineral map.

maps covering large areas. We focus on spectroscopic
data since it is diagnostic in the study of surface com-
position and mineralogy on Mars; and consequently,
it permits the assessment of geology, habitability, and
potential biosignature presence [2, 3].

This work also derives an exploration strategy for se-
lecting samples that improve science productivity. We
first use well-established principles from information
theory, such as Shannon entropy [4], that allow the
robot to identify the most meaningful science measure-
ments [5, 6]. We then formulate rover exploration as
an informative path planning problem where the goal
is to minimize entropy, and which can be solved with
a variety of existing algorithms [7, 8, 9].

The success of this approach was recently demon-
strated [10]: the autonomous rover Zoë surveyed a
well-studied region in Nevada (Figure 1). In this work,
we extend and apply our methodology to actual Mars
data and show performance in a simulation study that
involves mineralogical investigations at two locations
of interest: Jezero Crater and Nili Fossae.
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Figure 2: Spectroscopic maps of Martian regions at Jezero Crater (left) and Nili Fossae (right). Mineralogy is esti-
mated from spectral signatures (center). Cream tones represent carbonates, whereas cyan indicates olivine presence.

2 RELATED WORK

Robots have become skilled at detecting objects under
static conditions, goals and assumptions [11, 5, 12]. A
few robots can go beyond detection to perform auto-
matic science data analysis [13, 14]. However, they
pursue static objectives that are fixed at the outset,
such as detecting dust devils on Mars [15]. Some
robots have used models based on Bayesian networks
for mineral classification [12] or meteorite identifica-
tion [11], but they also operate under predefined objec-
tives that ignore the evolution of the robot’s knowledge
throughout the mission.

There are more adaptive models for autonomous robot
exploration that rely on information-theoretic princi-
ples. Examples include Gaussian processes for binary
terrain classification [5], ocean temperature mapping
[8] and plant phenotyping [16]. Nevertheless, they
are limited to scalar field mapping and are unable to
reconstruct high resolution data. Recent efforts have
developed adaptive algorithms with high-level science
objectives [6, 17]. However, they work with highly
discretized models and fail to exploit valuable infor-
mation that is available from remote sensing data.

We are especially interested in previous work that
combines low (remote) and high (in situ) resolution
data for robotic exploration. Thompson et al. present
a simple linear model that connects both, but actu-
ally downsamples the high resolution measurements
and thus loses valuable information [18]. Candela et
al. do the opposite by improving the details in low
resolution data, but ignore important spatial correla-
tions [19]. Foil and Wettergreen [20] and Thompson

et al. [21] effectively utilize contextual information for
surface classifications with spectroscopic data. How-
ever, informative robotic exploration needs a function
to quantify and reward productivity, but in both cases
it is either approximated [20] or ignored [21] due to
computational difficulties.

Finally, recent work by Candela et al. manages to com-
bine remote and in situ data for mapping spectroscopic
data, derives an information-theoretic reward function
for selecting the most valuable samples, and demon-
strates feasibility with an autonomous rover carrying a
spectrometer [10].

3 ACTIVE MAPPING

Planetary sciences rely on spectroscopic data for com-
position analysis. Each material reflects, emits, or
absorbs light in a unique way throughout the wave-
lengths of the electromagnetic spectrum. The mea-
sured signals are called spectra and contain recogniz-
able features or patterns that are used for rock and min-
eral identification [22]. Spectroscopic maps are spatial
structures where each coordinate is associated with a
full spectrum measurement and used to estimate com-
position. Figure 2 shows examples of spectroscopic
maps at Jezero Crater and Nili Fossae.

We focus on the problem where a robotic explorer aims
to learn the spatial distribution of spectra in the scene
M in order to then map k mineral classes c1, c2, · · · , ck.
We refer to this problem as spatio-spectral regression.
We assume it can be done by combining two different
types of measurements: low resolution remote spectra
x ∈ X ⊂ Rm, and high resolution in situ spectra y ∈
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Figure 3: The active mapping model. It integrates feature extraction, regression, and classification. The rover collects
in situ spectra Y ⊂ Rn and the encoder extracts their features Z ⊂ Rd. Multiple Gaussian processes learn how to
predict features from available remote spectra X ⊂ Rd and spatial coordinates L ⊂ R2. The decoder reconstructs
high-resolution spectra from predicted features. The classifier estimates class membership C using predicted spectra.

Y ⊂ Rn. Remote spectra are available beforehand for
many spatial locations l ∈ L ⊂ R2 (e.g. latitude and
longitude), whereas just a few in situ spectra can be
collected by the rover.

We solve this problem by combining multiple machine
learning algorithms. Gaussian process regression has
been widely used in spatial statistics [23] and informa-
tive robotic exploration [5, 8, 16]. However, previous
work focuses on mapping scalar fields (e.g. tempera-
ture), whereas our goal is to learn high-resolution spec-
troscopic maps. We tackle this issue with feature ex-
traction techniques, which reduce the data dimension-
ality by deriving a subset of non-redundant features.
Once a spectroscopic map is predicted, we utilize clas-
sification to estimate mineral composition. Figure 3 il-
lustrates how these algorithms are combined in order
to achieve active mineral mapping. The rest of this
section describes feature extraction, Gaussian process
regression, and classification in more detail.

3.1 Feature Extraction

In situ spectroscopic measurements have high resolu-
tion. Many channels and wavelengths are highly cor-
related (especially the ones that are adjacent to each
other), allowing for the application of dimensionality
reduction techniques. We use a variational autoen-
coder (VAE) [24], a neural network that performs non-
linear dimensionality reduction. It converts a set of
high-resolution observations y ∈ Y ⊂ Rn into a set of
lower dimensional features z ∈ Z ⊂ Rd, where d < n.
We specifically use a VAE because it learns a represen-
tation that resembles a standard multivariate normal
distribution, i.e. Z ∼ Nd(0, Id), effectively normalizing
and uncorrelating the features. The VAE is composed
of two networks: an encoder that extracts the features,
and a decoder that reconstructs high-resolution obser-

vations using the learned features. The architecture of
the used VAE is similar to the one presented by Can-
dela et al. [19]. The VAE ignores spatial information.

3.2 Gaussian Processes for Spatio-Spectral
Regression

The robot uses Gaussian processes (GPs) [25] for
spatio-spectral regression, that is, to learn the spatial
distribution of spectra throughout the scene. GPs are
typically used for mapping scalar values, but our prob-
lem involves multivariate regression. We simplify by
using GP regression to learn the distribution of low di-
mensional features Z instead. Moreover, dimension-
ality reduction with a VAE uncorrelates the learned
feature representation, allowing for the utilization of
d independent GPs.

We next provide a brief explanation in regard to our
specific GP regression model. If needed, extensive
and canonical documentation can be found in [25].
Formally, we define an input vector that concatenates
spatial coordinates and remote measurements as v =

[l, x] ∈ V ⊂ R2+m, similarly as Thompson [5]. We
assume there exists a latent function f i : R2+m → R
that maps an input v to each feature zi = f i(v) + εi,
where i = 1, 2, . . . , d. Each GP learns a distribution
over the values that f i can take. A GP is defined by
a mean function µi and a covariance function Ki

θ, i.e.
f i(v) ∼ GP(µi(v),Ki

θ(v, v
′)). We assume that the mean

is zero because of the way features are normalized by
the VAE. For the covariance matrix, we rely on the
widely used squared exponential kernel. We define
an anisotropic kernel that distinguishes between spa-
tial and spectral dimensions:

Ki
θ(v, v

′) = θi
0 exp

−||l − l′||22
2(θi

l)
2
−
||x − x′||22

2(θi
x)2

 , (1)
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where θi =
[
θi

0, θ
i
l, θ

i
x

]
are the kernel hyperparameters

for each GP. Additionally, we utilize the GP variant
for noisy observations, and thus use an additional hy-
perparameter σi

noise . The GP hyperparameters are es-
timated by maximizing the log-likelihood of the ob-
served data as shown in [25].

3.3 Mineral Classification from Spectra

Mineral composition is automatically estimated via
classification. A predicted high-resolution spectrum y
is compared against a set of well-known spectra, one
for each mineral class c1, c2, · · · , ck. This set is known
as a spectral library. In this paper we use a Gaus-
sian classifier that estimates class membership using
Bayes’s theorem as follows:

p(c|y) =
p(c)p(y|c)∑

c′ p(c′)p(y|c′)
, (2)

where p(c|y) is the probability of class membership,
p(c) is the prior distribution, and the likelihood follows
a Gaussian distribution, i.e. p(y|c) ∼ N(µ,Σ). Each
class c j is defined by a mean µ j and a covariance Σ j.

4 INFORMATIVE EXPLORATION

The rover aims to collect meaningful science measure-
ments: the ones that better explain and reconstruct
the scene. Both in information theory and Bayesian
experimental design, information-driven action selec-
tion can be formulated as the minimization of pos-
terior entropy, which measures the uncertainty of a
variable of interest after collecting new information
[4, 6, 5, 16, 7]. Here the variable of interest is
the spatial distribution of features throughout a spec-
troscopic map, which we assume is composed of a
large, yet finite set of points M = {v1, . . . , vp}. The
new information is given by the in situ coordinates
and measurements collected by the robot, i.e. P =

{[l1, y1], . . . , [lk, yk]}. The uncertainty of the model is
quantified using Shannon entropy, which is additive
for independent sources. Since the model consists of d
independent GPs, the entropy of the map is additive for
features and given by the following expression [4, 7]:

H(M|P) =
1
2

d∑
i=1

log
(
(2πe)|M| |Σ̂i

M|P
|
)
, (3)

where Σ̂i
M|P

is the predicted covariance of each feature
zi throughout the entire map M after being updated
with the in situ samples P [25]. Then, an informative
planner will solve an optimization problem where the
path should minimize the posterior entropy of the map:

min
P

H(M|P) subject to Cost(P) ≤ Budget. (4)

There are many path planners that could be used for
this problem. Some methods assume independence
between sampling locations, but this is usually an
oversimplification in informative exploration scenar-
ios [26]. There are near-optimal greedy algorithms
that work well on Gaussian processes [7, 16]. Other
approaches may be computationally intensive, but po-
tentially closer to optimality, such as branch and bound
techniques planning techniques [8]. Finally, we are es-
pecially interested in Monte Carlo tree search (MCTS)
planners that have been applied to geologic exploration
scenarios [9, 17].

5 MARS SIMULATION STUDY

We demonstrate the performance of our approach in a
simulation study. It involves spectroscopic investiga-
tions and mineral mapping at two locations of interest
on Mars: Jezero Crater and Nili Fossae.

This study uses or simulates data from the fol-
lowing three spectrometers: the Mars Express
High-Resolution Stereo Camera (HRSC) [27], the
Mars 2020 Perseverance rover multispectral imager
MastCam-Z [28], and the MRO Compact Reconnais-
sance Imaging Spectrometer for Mars (CRISM) [29].

HRSC serves as the source of remote data because it
has global coverage of Mars, but its resolution is insuf-
ficient for composition analysis. It has an approximate
resolution of 50 m/pixel and 4 color channels: blue
440 nm, green 530 nm, red 750 nm, and infrared 970
nm. Image h5270 0000 is used for both sites.

MastCam-Z serves as the source of in situ data, allow-
ing for mineral identification in the visible and near-
infrared wavelengths (400 - 1100 nm). MastCam-
Z consists of 2 cameras (left and right) with a total
of 20 bandpass filters (channels). Since MastCam-Z
data is yet to be acquired, we simulate rover measure-
ments using MastCam-Z spectral response information
in conjunction with data from CRISM.

CRISM is an imaging spectrometer that provides high-
resolution spectra (6.5 nm/channel) in a wide spectral
range (436 - 3897 nm). It has a spatial resolution of 18-
36 m/pixel. The following CRISM images are used in
this study (Figure 2): HRL000040FF (Jezero Crater),
and FRT00003E12 (Nili Fossae).

Data from these spectrometers is prepared as follows.
The HRSC and CRISM products are spatially aligned
with manually-selected ground control points. They
are co-registered using a first degree polynomial warp-
ing transformation, and then resampled to 50 m/pixel.
CRISM data is preprocessed and ratioed using the
standard procedure in [2]. Afterwards, the empirical
line method [30] is used to find the correspondence
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Figure 4: A mineral (Fe olivine) as measured by the
Mars instruments CRISM, MastCam-Z, and HRSC.
Their channels and respective bandwidths are shown.

between the HRSC and CRISM reflectance values.
MastCam-Z is estimated by convolving its spectral re-
sponse profiles [28] with CRISM data. A subset of 12
channels is used since 8 of the filters either overlap (i.e.
too redundant) or have very wide bandwidths. Figure
4 shows an example of this curated data set.

This study relies on the CRISM spectral library for
mineral classification since it contains many of the
minerals that have been identified on Mars [2]. In
this paper we focus on carbonates since they have
been found on both sites and are of scientific inter-
est due to their fossil preservation properties [2, 31].
We also consider olivines and silicas. Specifically, our
classifier uses 5 minerals from the CRISM spectral
library: Fe/Ca-carbonate, Mg-carbonate, Fe-olivine,
Mg-olivine, and hydrated silica.

6 EXPERIMENTS AND RESULTS

The experiments are designed to evaluate the perfor-
mance of both the learning and exploration strategies
in terms of science productivity.

6.1 Experimental Setup

Three hundred rover traverses are simulated at each of
the two sites: Jezero Crater and Nili Fossae. For each,
we utilize a 3× 3 km subregion that is mineralogically
diverse. We represent the exploration space as an 8-
connected grid with a step size of 150 meters (3 pix-
els). Starting locations are evenly spaced throughout
each subregion; end goals are not specified. We im-
pose a constraint of 20 samples per traverse.

We compare the performance of three informative path
planning algorithms:

• Random: sequentially samples a random neigh-
boring location until the sampling budget is ex-
hausted. This is a science-blind baseline.

• Greedy: sequentially samples the best neighbor-
ing location using a one-step lookahead. This is a

myopic exploration strategy.

• MCTS: the Monte Carlo tree-search planner by
Kodgule et al. [9] using a four-step lookahead.
This is a non-myopic path planner.

We use three metrics to evaluate the performance of
the planners. For normalization purposes, we compute
the averages with respect to the total number of points
in the map. The first metric is the posterior entropy
(Equation 3), which is directly minimized by the plan-
ners (Equation 4) and is calculated without a ground
truth. The second metric is the reconstruction error
of spectra throughout the scene in terms of root mean
squared error (RMSE). It should be indirectly mini-
mized by the planners since it always requires a ba-
sis for comparison. The third metric is the Kullback-
Leibler divergence (KLD); it is a smooth function that
measures the difference between the real and the pre-
dicted class probabilities.

In this study, both the VAE and the GPs (Section 3)
are trained with the data that is withheld from the ex-
periments. L2 normalization is applied to both HRSC
and MastCam-Z spectra to allow the model to focus on
spectral features rather than albedo values. The VAE
extracts features from MastCam-Z spectra and encodes
them into a space with dimensionality d = 3; a value
we find to work well. The model consists of 3 inde-
pendent GPs that are pre-trained with the same data
set, and later fine-tuned online in order to better adapt
to incoming data. The Gaussian classifier consists of
the following parameters that we find to work well
in practice: a uniform prior distribution, means cor-
responding to the 5 selected minerals from the CRISM
spectral library, and isotropic (spherical) covariances
Σ = (0.02)2In. We assume that the ground truth classes
are given by the output of the Gaussian classifier when
applied to simulated MastCam-Z spectra, which is also
assumed to be the ground truth in situ spectra.

Training and simulation are performed using a laptop
computer with an Intel i7 processor (2.9 GHz quad-
core) and 16GB of memory. Each waypoint is com-
puted within just a few seconds or minutes, depending
on the complexity of the path planner.

6.2 Results

We first discuss and show qualitative results. Figure
5 includes an example of a rover traverse at Nili Fos-
sae together with its corresponding mineral mapping
process. Mineral signatures are successfully identified
and extrapolated throughout the entire scene. We ob-
serve that just a few samples (20) are sufficient to map
the mineralogy of most of the 3 × 3 km area.
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Figure 5: Example of the mineral mapping process at Nili Fossae. Left: the rover identifies and extrapolates two
mineral signatures. Center: the rover collects more samples and updates the map. Right: the rover discovers a third
mineral. This example only shows points with a mineral probability greater than 50%.

We now analyze metric correlation throughout the sim-
ulations. Figure 6 shows error vs. entropy scatter plots
for Jezero Crater and Nili Fossae with correlation co-
efficients of 0.8855 and 0.8262, respectively. These
values indicate a positive correlation between HRSC
and CRISM data, and confirm that entropy is a suitable
objective function for spectroscopic mapping. Figure
7 shows KLD vs. error plots with even higher corre-
lations: 0.9806 and 0.9609. This makes sense since
classification accuracy (KLD) directly depends on the
quality of the predicted high-resolution spectra.

We then evaluate the performance of the three plan-
ners. The corresponding plots are shown in Figure
8, where all results have statistically significant differ-
ences (α = 0.05). In all cases, entropy, reconstruc-
tion error, and KLD show decreasing trends as more
samples are collected. Error and divergence converge
faster than entropy. It is clear that Random is the worst
planner. We confirm that MCTS, the algorithm with
the farthest planning horizon, performs best at the end.
Note that Greedy outperforms MCTS during the first
few samples; this is to be expected because Greedy
selects points that immediately provide high rewards,
whereas MCTS computes a long-term strategy.

7 CONCLUSIONS

This paper presents an approach to improve science
productivity in autonomous rover exploration. We de-
scribe an active learning model for wide-area mineral
mapping that combines remote and in situ measure-
ments. It extrapolates mineral signatures from just
a few rover samples in order to densely map an ex-
plored scene. This is done by fusing feature extrac-
tion, Gaussian process regression, and mineral classifi-
cation. Furthermore, exploration and productivity are
improved by incorporating notions from information

Figure 6: Average reconstruction error vs. entropy at
Jezero Crater (left) and Nili Fossae (right).

Figure 7: Average KLD vs. reconstruction error at
Jezero Crater (left) and Nili Fossae (right).

theory and non-myopic path planning.

The presented Mars simulation study confirms the re-
sults that were also found in previous work at Cuprite,
Nevada. Entropy and reconstruction error are strongly
correlated, showing that entropy is a suitable objec-
tive function for scene mapping. The model’s entropy,
reconstruction error, and Kullback-Leibler divergence
present decreasing trends as a function of sampling.
We also observe that non-myopic planning consis-
tently outperforms simpler exploration strategies such
as myopic planning and random sampling.
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Figure 8: Performance plots and 1-sigma error bars
for Jezero Crater (left column) and Nili Fossae (right
column). Average entropy (top row), reconstruction er-
ror (middle row), and KLD (bottom row) as a function
of collected samples per traverse. All results have a
statistically significant difference (α = 0.05).

Future investigations will address rover traversabil-
ity, specifically the trade-off between safety and sci-
ence productivity in heterogeneous terrains, as well as
the potential of mineralogy mapping for terrain un-
derstanding. Finally, we will apply these methods to
other scientific endeavors that could also benefit from
autonomous robotic exploration, such as maritime or
agricultural mapping.
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